

Assessing physical habitat condition using River MImAS

Why? What? How?

Chris Bromley Ecology Partnership & Development Unit SEPA

- Why did we chose the MImAS approach?
- What is MImAS?
- How does it work?
- Results of MImAS assessments
 - How can we improve the tool?
- Examples

Why use the MImAS approach?

www.sepa.org.uk

 \cap

What River MImAS isn't

The concept of the two-stage ditch was developed by observing natural processes that form stable streams and rivers.

Key principles:

- Transparent & consistent assessment of risk of failing GES posed by existing & future engineering activities.
- 2. Rivers will be managed to deliver the following WFD objectives:
 - a) WBs at HES will be protected.
 - b) WBs at GES will be protected as far as necessary to deliver GES for biota.
 - c) WBs at <=MES will be protected to prevent deterioration of biological quality AND to ensure restoration potential to achieve GES for biota is not compromised.
- 3. Best available information on links between ecology & geomorphology used to protect ecologically relevant features & processes. Where links poorly understood, aim is to protect geomorphological processes & features.
- 4. The framework must allow refinement & evolution through time.

Key assumptions:

- 1. There is a relationship between the extent of morphological alterations & the impact on biota and ecological status.
- 2. The response of a water body's morphology to engineering pressures is predictable for the type of water body in question.
- 3. The response of biota to morphological change is predictable and depends on their sensitivity.
- Water bodies have the capacity to withstand <u>some</u> morphological alterations without changing their ecological status.
- 5. The thresholds (morphological condition limits) beyond which there is a risk to ecological status can be identified using expert judgment. These MCLs can be expressed as a **percentage capacity used**.
- 6. MImAS estimates whether the MCLs have been exceeded.

 Five semi-independent modules allow incremental improvement through time.

Module 1: Attribute module

Geomorphological & habitat attributes

- 1. Natural range of flow & morphological features.
- 2. Refuge habitat zones.
- 3. Self-sustaining & diverse riparian plant communities.
- 4. Presence, abundance & distribution of in-channel vegetation.
- 5. Habitat connectivity.

Geomorphological processes & disturbance patterns

- 1. Natural disturbance regime.
- 2. Mobilisation of channel bed surface gravels.
- 3. Periodic channel bed scour.
- 4. Infrequent channel resetting floods.
- 5. Balanced fine & coarse sediment budgets.
- 6. Channel migration.
- 7. Hyporheic flow exchange.
- 8. Connected & functional floodplains.

Geomorphological & habitat attributes

- 1. Natural range of flow & morphological features.
- 2. Refuge habitat zones.
- 3. Self-sustaining & diverse riparian plant communities.
- 4. Presence, abundance & distribution of in-channel vegetation.
- 5. Habitat connectivity.

Geomorphological processes & disturbance patterns

- 1. Natural disturbance regime.
- 2. Mobilisation of channel bed surface gravels.
- 3. Periodic channel bed scour.
- 4. Infrequent channel resetting floods.
- 5. Balanced fine & coarse sediment budgets.
- 6. Channel migration.
- 7. Hyporheic flow exchange.
- 8. Connected & functional floodplains.

How does MImAS work?

Module 1: Attribute module

Eco-geomorphic attributes	Definition	Link to ecos	ystem
Channel zone		Attributes an Attributes	Processes
Hydraulic geometry	Describes the size and shape of the channel		
Planform	Spatial pattern and location of a channel, as viewed from above	ALL	ALL
Cross section	The cross sectional form of the channel (width-depth)	ALL	ALL
Profile (Slope)	Slope of the channel bed and the variation of that slope	ALL	ALL
Substrate condition	Describes the size, structure and sorting of riverbed gravels		
Substrate size	The size distribution of surface gravels	1, 4	2
Embeddedness	The extent to which framework gravels are covered or sunken into the silt, sand, or mud of the riverbed.	1, 4	7
Compaction	A measure of the degree of sediment imbrication and, potential mobility under normal flow conditions	1, 4	1, 2, 3,
Erosion/deposition character	Describes trends in sediment, mobilization, transport and deposition		
Lateral rate of adjustment	The extent and rate at which a channel can move in the river corridor	1, 2, 3,	1, 6, 8
Bar character	Size, distribution and stability of natural deposition features.	1, 2, 5	
Bedform pattern	Topography of the riverbed and bed features.	1, 4, 5	7
In-channel vegetation	Describes the presence and distribution of vegetation features		
Structure and extent of instream vegetation	The character and density of aquatic and terrestrial vegetation,	1, 2, 4	
Structure and extent of Woody debris	The character and density of large woody debris, linked to geomorphic structure and flow patterns	1, 2, 4, 5	1, 2, 3, 7
Continuity	Assess artificial barriers to flow, sediment and migratory movement		
Migratory movement	Ability of aquatic organisms to migrate freely through the channel	1, 5	
Sediment transport	The transport capacity of the channel. A measure of the competency of a channel to transport sediment.	1,	5
Floodplain connectivity	Ability of the channel to flood the adjacent land	1, 3, 5	5, 8
Banks and Riparian zone			
Bank morphology	The shape and character of the bank and presence of erosion features	1, 2, 3	8
Riparian vegetation structure	The character and density of vegetation, linked to geomorphic structure and flow patterns.	1, 2, 3, 4, 5	1, 5, 6, 8
Bank roughness	The roughness of the channel banks (includes consideration of materials and presence of vegetation).	1,	1

Module 2: Typology module

- Typical channel slope, sinuosity, valley confinement, dominant geology
- Type A (Bedrock, cascade)
- Type B (Step-pool, plane bed)
- Type C (Plane-riffle, braided, wandering)
- Type D (Active meandering)
- Type F (Passive meandering)

Module 3: Sensitivity module (morphological)

stance

Time

0.5 0.5 0.5

- Qualitative assessment.
- Designed to underpin a simple assessment of risk posed by engineering activities.
- A range of important factors are not considered:
 - Rate of return to previous/reference state.
 - Whether a channel is close to a threshold of system change.
 - Do existing pressures make channel more sensitive to additional pressures?

sensitive to	addit	ION	al p	ore	ssur	es?	•				1.5 1.5	0. 0.			/m			M		M	mm	Į.	
rofile (Slope)	1	0	1	0	1	0.5	0.5	0.5	1	1	0.5	0.	- I +	- t	•		† †	4	_ ∔		•		
Substrate condition													'	II Incensiti				•	11			- ŧ	
ubstrate size	1	0.5	0.5	0.5	1	0.5	1	0.5	1	1	0.5	0.				_ L	Inscribium			insen	sove		
mbeddedness	1	0.5	0.5	0.5	1	0.5	1	0.5	1	1	0.5	0.	UT: N	nh thrach	old anulo	-							
Compaction	1	0.5	0.5	0.5	1	0.5	0.5	0.5	1	1	0.5	0.	MT: m	edium th	eshold e	nvironm	ent		T۶	mail dis	turbance		
Erosion/deposition character													LT low	threshol	d environ	ment							
ateral rate of adjustment	0	0	0	0	1	0.5	0.5	0.5	1	1	0.5	- 0.	HE: H	gh energ	y environ	ment			T,	Moderat	e disturbance		
iar character	1	0.5	0.5	0.5	1	0.5	0.5	0.5	1	1	0.5	0.	ME: N LE :lo	edium er venergy	engy env environn	ironmer ient	nt .						
iedform pattern	1	0.5	0.5	0.5	1	0.5	0.5	0.5	1	1	0.5	- 0.	Definit						- 4 1	arge Dis	turbance		
h-channel vegetation													Dennic	one					-				
tructure and extent of instream vegetation	0	0	0	0	1	0.5	0.5	0.5	1	1	0.5	0.	Resist	ance: at	olity to n	emain e	essentially uncl	hanged o	despite t	he pres	ence of disturt	bances.	
tructure and extent of Woody debris	0	0.5	1	0	1	0.5	1	0.5	1	0.5	0.5	0.	Kecilik	noe: ap	iity to re	tum to	a reference st	ste (or a)	ynamic)	atter a t	emporary dist	urbance.	
Flow zone																							
iiotope diversity	1	0	0.5	0	1	0.5	0.5	0.5	1	1	0.5	0.5	1	1	1	1	1	1	1	1	1	0.5	0.5
Continuity																							
Nigratory movement	1	0.5	0.5	0.5	1	0.5	0.5	0.5	1	0.5	0.5	0.5	1	0.5	0.5	0.5	1	0.5	0.5	0.5	1	0.5	0.5
ediment transport	1	0.5	0.5	0.5	1	0.5	0.5	0.5	1	0.5	0.5	0.5	1	0.5	0.5	0.5	1	0.5	0.5	0.5	1	0.5	0.5
loodplain connectivity	0	0	0	0	1	0.5	1	0.5	1	1	0.5	0.5	1	1	0.5	0.5	1	1	1	1	1	0.5	1
lanks and Riparian zone																							
iank morphology	0	0	1	0	1	0.5	1	0.5	1	1	0.5	0.5	1	1	1	1	1	0.5	1	0.5	1	0.5	1
ank roughness	0	0	0	0	1	0.5	0.5	0.5	1	1	1	1	1	1	1	1	1	0.5	1	0.5	1	0.5	1
liparian vegetation structure	0	0.5	1	0	1	0.5	0.5	0.5	1	0.5	1	0.5	1	0.5	1	0.5	1	0.5	1	0.5	1	0.5	0.5

How does MIMAS work? Module 3: Sensitivity module (ecological)

Ecological sensitivity

'The risk of degradation of the intactness, integrity or naturalness of communities, or impacting on important organisms, thereby threatening ecological status.'

Sensitivity	Description	
Sensitive	A moderate to large impact on a eco-geomorphic indicator of ecosystem health is likely to affect the intactness, integrity or naturalness of communities, or impact upon important organisms.	0.5
Highly sensitive	A small impact on a eco-geomorphic indicator of ecosystem health is likely to affect the intactness, integrity or naturalness of communities, or impact upon important organisms.	1.0

	S. 749-5			Cine a	delina	201910						
		201-					and the second					
				12		2 have	3 100					
		1000	-2-1			1	- The later	\sim				
Ecological Sensitivity	Bedrock				Plane bed				Pool riffle etc			
Attribute	HE-HT			Α	HE-MT			в	ME-LT			C
Channel	fish	invert	macro	tot	fish	invert	macro	tot	fish	invert	macro	tot
Hydraulic geometry												
Planform	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Cross-section	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	1.0	0.5	1.0	1.0
Slope/gradient	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Substrate condition												
Size	0.5	0.5	1.0	1.0	0.5	0.5	1.0	1.0	1.0	0.5	1.0	1.0
Compactness	0.5	0.5	1.0	1.0	0.5	0.5	1.0	1.0	1.0	0.5	1.0	1.0
Embeddedness	0.5	0.5	1.0	1.0	0.5	0.5	1.0	1.0	1.0	0.5	1.0	1.0
Erosion/deposition character												
Lateral rate of adjustment	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Bar character (Presence and form)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Bedform pattern	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	1.0	0.5	0.5	1.0
In-channel vegetation												
Structure and extent of instream vegetation	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Structure and extent of woody debris *	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Flow												
Biotope diversity/ complexity	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	1.0	0.5	1.0	1.0
Continuity												
Migratory movement (biotic)	1.0	0.5	0.5	1.0	1.0	0.5	0.5	1.0	1.0	0.5	0.5	1.0
Sediment transport	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Floodplain connectivity	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Banks and Riparian zone vegetation												
Bank geometry/form	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Bank roughness/vegetation	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Structure and extent of riparian vegetation *	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	1.0	1.0

- Ecological sensitivity is channel type-specific, not pressure specific.
- When considering impact to eco-geomorphic attributes:
 - Direction of change not considered.
 - Only whether change has occurred or not.
- What is the likelihood that a change in the ecogeomorphic attribute, irrespective of its cause, impacts fish, macrophytes and macroinvertebrates?
- All sensitivities set to 'Sensitive' unless two or more ecologists agreed that 'Highly sensitive' was appropriate.

000

How does MImAS work?

Module 4: Pressure module (impact assessment procedure)

- Likelihood of impact?
 - Pressure specific, not type specific

Impact class	Definition	
Likely	In most cases, this activity will result in an impact on a eco-geomorphic indicator.	1.0
Possible	In some cases, this activity will result in an impact on a eco-geomorphic indicator	0.5
Unlikely	In most cases, this activity will not result in an impact on a eco-geomorphic indicator	0.0

Continuous or semi continuous (Con): > 50 % natural woody (trees) vegetation

Scattered (Sct): > 5-50% natural woody (trees) vegetation. This category should also be used when

there is a single line of trees.

None (N); <5% tree coverage (e.g. one or two isolated trees) or no trees present.

Coniferous Plantation (CP): used when coniferous plantation extends to within 10m of <u>banktop</u>.

Step 2 - Record the riparian vegetation structure (complex; simple; uniform; bare).

Complex >3 dominant vegetation types, with one vegetation type woody or shrub

Simple: 1-3 dominant vegetation types, with one vegetation type woody or shrub

Uniform: only one vegetation type present.

Trees

Density

오

trees

Vegetation

structure

Module 4: Pressure module (impact assessment procedure)

- Likelihood of impact?
- Pressure specific, not type specific
- Zone of impact

and a

No. and the second seco

_\	Impact class	Definition	
_/	Likely	In most cases, this activity will result in an impact on a eco-geomorphic indicator.	1.0
	Possible	In some cases, this activity will result in an impact on a eco-geomorphic indicator	0.5
	Unlikely	In most cases, this activity will not result in an impact on a eco-geomorphic indicator	0.0

	Dredging	Embankment	Hard bank protection	Riparian Vegetation removal	Culverts	realignment	partly recovered realignment	Bed reinforcement (inc fords)
Channel								
Hydraulic geometry								
Planform	0.50	1.00	0.50	0.00	1	1.00	0.50	0.50
Cross-section	1.00	1.00	1.00	0.50	1	1.00	0.50	1.00
Slopelgradient	1.00	1.00	0.50	0.00	1	1.00	0.50	1.00
Substrate condition								
Size	1.00	1.00	0.50	0.50	1	1.00	0.00	1.00
Compactness	1.00	1.00	0.50	0.50	1	1.00	0.50	1.00
Embeddedness	1.00	0.50	0.50	0.50	1	1.00	0.50	1.00
Erosion/deposition character								
Lateral rate of adjustment	0.50	1.00	1.00	0.50	1	1.00	0.00	1.00
Bar character (Presence and form)	1.00	1.00	0.50	0.00	1	1.00	0.50	1.00
Bedform pattern	1.00	1.00	0.50	0.00	1	1.00	0.50	1.00
In-channel vegetation								
Structure and extent of instream vegetation *	1.00	1.00	0.50	0.00	1	1.00	0.50	1.00
Structure and extent of woody debris *	1.00	0.50	0.50	0.00	1	1.00	0.50	1.00
Flow								
Biotope diversity/ complexity	1.00	1.00	0.50	0.50	1	1.00	0.50	1.00
Continuity								
Migratory movement (biotic)	1.00	1.00	0.50	0.00	1	0.50	0.00	0.50
Sediment transport	1.00	1.00	0.50	0.00	1	1.00	0.50	1.00
Floodplain connectivity	1.00	1.00	0.50	0.00	1	1.00	0.50	0.50
Banks and Riparian zone vegetation								
Bank geometry/form	1.00	1.00	1.00	0.50	1	1.00	0.50	0.50
Bank roughness/vegetation	1.00	1.00	1.00	0.50	1	1.00	0.00	0.00
Structure and extent of riparian vegetation *	0.50	1.00	1.00	0.50	1	1.00	0.50	0.50

Module 4: Pressure module (impact assessment procedure)

Zones

2

1.5

2

1.5

2

1

15

1.5

1.5

2

1.5

1.5

2

1.5

2

2

1

1.5

1

1

Banks and Riparian vegetation

1

1

15

1.5 1.5

1

15

1.5

1.5

2

1.5

1.5

2

1.5

1.5

2

1

1

1

1

Channel

- Likelihood of impact?
- Pressure specific, not type specific

Attribute

Dredging

Embankment

Sediment Removal

Sediment Manipulation

Riparian Vegetation Loss

Set Back Embankment

Hard Bank Protection

Soft Bank Protection

Croys/Flow Deflectors

Bed Reinforcement

Artifical Substrate

Hydro Regime EXT Modified

Sediment Regime EXT Modified

zones are a multiple of length of activity

Bridge Piers

Realignment Partly Recovered

Bank Reprofiling

Straightening

Flood Bypass

Culverts

Weirs

Zone of impact .

Density

오

trees

Vegetation

structure

.

Continuous or semi
continuous (Con <u>);</u> > 50 %
natural woody (trees)
vegetation

Scattered (Sct): > 5- 50% natural woody (trees) vegetation. This category should also be used when

there is a single line of trees.

None (N); <5% tree coverage (e.g. one or two isolated trees) or no trees present.

(not plantation)

Coniferous Plantation (CP): used when coniferous plantation extends to within 10m of banktop.

Simple: 1-3 dominant vegetation types, with one vegetation type woody or shrub

Uniform: only one vegetation type present.

	Trees (not plantation)
	Trees (not plantation)
٩	Trees

How does MIMAS work? Module 5: Scoring module

	Impact	rating	= Ecological se	ensitivit y ×	^C Morphologi	cal sensitivit y × Likel	ihood	of impa	act × Zo	one of i	mpact -]
		len.				An in These	S. Mark					
					10110	Morphological alteration		River types to	which the mo	orphological co	onditions apply	/
		Impact	Rating x Press	ire Footpri	int	Morphological alteration	Α	В	с	D	E	F
Capacity	used =					Set-back embankment	0	0	0	0	0	0
		ĺ	Water body	length	j	Embankment	0	0.38	0.75	0.63	0.38	0.38
		Star 1	and the second second		Mar and a state	Condition of Riparian (bankside) vegetation	0	0-0.19	0.02-0.31	0.02-0.31	0.01-0.19	0.01-0.19
		to a	All we want	1 1 1000	5.5	Soft (or green) bank reinforcement	0	0.19	0.31	0.31	0.19	0.19
		14. 3		L definition	all and a	Hard (or grey) bank reinforcement	0	0.38	0.75	0.63	0.38	0.38
	Morph	ological C	ondition Limits (envir	onmental stand	dards)	Culvert with natural bed (e.g. arch culvert)	0	0.50	1.00	0.83	0.5	0.50
						Pipe or Box culvert	0	0.50	1.00	0.83	0.50	0.50
Chappel of	ub turpology			HIGH	V	Sediment removal	0	0	0	0	0	0
Channer sc	ib-typology				5%	Dredging	0	0.31	0.50	0.56	0.31	0.31
Engineering	pressures			GOOD	050/	Bed reinforcement	0	0.13	0.25	0.19	0.13	0.13
(Morpholog Pressures I	ical Database)		River MImAS +		25%	Croys or groynes or other flow deflectors	0	0.38	0.75	0.63	0.38	0.38
Density and of riparian	d complexity vegetation			POOR	50%	Piled structures (including bridge piers)	0	0.08	0.17	0.17	0.08	0.08
					75%	Impoundments	0	0.33	0.67	0.58	0.33	0.33
				BAD	10/0	High impact channel realignment	0	0.50	1.00	0.83	0.5	0.50
						Low impact channel realignment	0	0.13	0.19	0.19	0.13	0.13
				WFD status	5-5	Where a range is given, UK agencies wou reflects the severity of the alteration	uld apply a sc n.	ore that falls wit	nin the range ar	nd, which in the	opinion of the a	gency,

River MImAS results

			Activity	Total			Activity	Total
			Impact	Impact			Impact	Impac
WB –	Zon	Activity	(%) -	(%) -	Zone	 Activity 	· (%) ·	(%)
3000	Channel	Embankments and Floodwalls no Bank Reinforce	r 47.42	63.86	Banks and Riparia	an Embankments and Floodwalls no Bank Reinforcen	nent 22.25	36.72
3000	Channel	Low Impact Channel Realignment	5.75	63.86	Banks and Riparia	an Low Impact Channel Realignment	3.32	36.72
3000	Channel	Riparian Vegetation	4.44	63.86	Banks and Riparia	an Riparian Vegetation	6.07	36.72
3000	Channel	Green Bank Reinforcement and Bank Reprofiling	2.63	63.86	Banks and Riparia	an Green Bank Reinforcement and Bank Reprofiling	3.51	36.72
3000	Channel	Set Back Embankments and Floodwalls	1.15	63.86	Banks and Riparia	an Set Back Embankments and Floodwalls	0	36.72
3000	Channel	Impoundments	1.12	63.86	Banks and Riparia	an Impoundments	0.36	36.72
3000	Channel	Grey Bank Reinforcement	0.54	63.86	Banks and Riparia	an Grey Bank Reinforcement	0.54	36.72
3000	Channel	Bridges	0.42	63.86	Banks and Riparia	an Bridges	0.41	36.72
3000	Channel	Pipe and Box Culverts	0.28	63.86	Banks and Riparia	an Pipe and Box Culverts	0.15	36.72
3000	Channel	Intakes + Outfalls	0.12	63.86	Banks and Riparia	an Intakes + Outfalls	0.11	36.72
3001	Channel	Impoundments	6.19	22.03	Banks and Riparia	an Impoundments	2.29	14.74
3001	Channel	High Impact Channel Realignment	5.04	22.03	Banks and Riparia	an High Impact Channel Realignment	3.17	14.74
3001	Channel	Embankments and Floodwalls no Bank Reinforce	r 4.17	22.03	Banks and Riparia	an Embankments and Floodwalls no Bank Reinforcen	nent 1.94	14.74
3001	Channel	Riparian Vegetation	3.29	22.03	Banks and Riparia	an Riparian Vegetation	4.31	14.74
3001	Channel	Grey Bank Reinforcement	2.13	22.03	Banks and Riparia	an Grey Bank Reinforcement	2.13	14.74
3001	Channel	Bridges	0.71	22.03	Banks and Riparia	an Bridges	0.68	14.74
3001	Channel	Set Back Embankments and Floodwalls	0.31	22.03	Banks and Riparia	an Set Back Embankments and Floodwalls	0	14.74
3001	Channel	Green Bank Reinforcement and Bank Reprofiling	0.1	22.03	Banks and Riparia	an Green Bank Reinforcement and Bank Reprofiling	0.14	14.74
3001	Channel	Intakes + Outfalls	0.09	22.03	Banks and Riparia	an Intakes + Outfalls	0.09	14.74

MImAS validation

- Ascertain suitability of the H-G & G-M MCLs.
- 90 500m reaches assessed.
- Bank protection, weirs, culverts, embankments, realignment & dredging.
- Sites chosen to span the five status classes and six channel types, with morphological & biological data if possible.
- 77% sites agree; 94.5% within one class.
- SEPA assessment of H-G boundary (5%) for water body scale assessment suggests it's about right (4%).

	Status	 Description
	High Status channels	The suite of eco-geomorphic attributes typical of that channel type should be present or abundant within a 500 metre reach. In essence we suggest that 90% of all features should be present or abundant for the river to be deemed of High Morphological Status. It is important for rivers of High Morphological (and ecological) Status to have both banks and the river bed intact. It is important that in the case of pool-riffle and step-pool channels a series of features are present and that individual geomorphic features are not present in isolation.
	Good Status channels	The suite of eco-geomorphic attributes typical of that channel type should be present or abundant within a 500 metre reach. In essence we suggest that 75% of all features should be present or abundant for the river to be deemed of Good Morphological Status. It is important for rivers of Good Morphological/ecological Status to have at least one of the banks and the river bed intact. In the case of actively migrating channel types the intact bank should be the one undergoing natural erosion and any bank protection on the opposite bank not preventing deposition. It is important that in the case of pool-riffle and step-pool channels a series of features are present and that individual geomorphic features are not present in isolation.
	Moderate Status channels	The majority of the suite of eco-geomorphic attributes typical of that channel type should be present within a 500 metre reach. In essence we suggest that over 50% of all features should be present for the river to be deemed of Moderate Morphological/ecological Status. It is important for rivers of Moderate Morphological Status to have at least one of the banks and the river bed intact.
「「「「「「「「「」」」	Poor Status channels	Should maintain elements of the natural channel type such as a gravel bed and natural banks but engineering works have resulted in one of the following: the natural process of sediment transport being significantly altered, the natural flow hydraulics being fairly uniform and hence the natural processes of erosion, sediment transport and deposition so altered as to not create the range of features one would expect to be present. In such cases it is likely that only 25-50% of features that you would expect to be present are actually observed.
	Bad Status channels	Will occur where the natural process of sediment transport have been significantly altered, so that the natural flow hydraulics have been modified to the extent that the processes of erosion, sediment transport and deposition do not create the range of features one would expect to be present. In such cases it is likely that only 0-50% of features that you would expect to be present are actually observed. Typically this will be due to either both banks being artificial, the river channel being artificially straight or the bed heavily modified.

Table 5 - The proportion of sites the model has accurately predicted.

		Sites in category	Number predicted correctly	Percentage correct
Morphological/ ecological status	High	6	6	100
	Good	30	18	60
	Less than good	54	48	89

Level of Agreement	Number	Percentage (%)
MImAS less sensitive -2 class	5	5.5
MImAS less sensitive to pressures- 1 class*	13	14
MImAS agrees with professional judgment	69	77
MImAS more sensitive to pressures- 1 class	3	3.5
MImAS more sensitive- 2 class	0	0

How can we improve MImAS?

Input data

- Altitude threshold for tree growth.
- <GES field surveys
 - MImAS data
 - ST:REAM reaches
 - Indicators data
- Improved typology allocation.
- CLAS-MPD link.
- New pressure categories
 - Sediment discontinuity d/s from dams.
 - Livestock poaching.
 - Intensive catchment land use.

Inner workings

- River scale-sensitive assessments
 - Accounting for lost habitat area? (*Role for fish data?*)
- Arbitrary effect of water body length.
- Double-counting of pressure impacts.
- Empirical calibration of impact ratings pressure-response R&D. (Role for fish data?)
 - Monitoring restoration projects at:
 - Four pilot catchments
 - Eddleston Water
 - Rottal Burn

- University of Southampton SEM
- Revisions to impact ratings:
 - Boost weighting of rip veg
 - Greater flexibility for realignments & dredging

Ecological Sensitivity	Pool riffle etc				Active meandering				
Attribute	ME-LT			С	LE-LT			D	Licigal y
	<i></i>								
Lhannel	fish	invert	macro	tot	tish	invert	macro	tot	
Hydraulic geometry									
Planform	0.5	0.5	0.5	0.5	L <u>0.5</u>	0.5	0.5	0.5	S Mail CE: Lata de
Cross-section	1.0	0.5	1.0	1.0	0.5	0.5	0.5	0.5	
Slope/gradient	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
Substrate condition									
Size	1.0	0.5	1.0	1.0	0.5	1.0	1.0	1.0	
Compactness	1.0	0.5	1.0	1.0	0.5	1.0	1.0	1.0	
Embeddedness	1.0	0.5	1.0	1.0	0.5	1.0	1.0	1.0	
Erosion/deposition character									
Lateral rate of adjustment	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
Bar character (Presence and form)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
Bedform pattern	1.0	0.5	0.5	1.0	0.5	0.5	0.5	0.5	
In-channel vegetation									
Structure and extent of instream vegetation *	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
Structure and extent of woody debris *	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
Flow									
Biotope diversityl complexity	1.0	0.5	1.0	1.0	0.5	0.5	0.5	0.5	
Continuity									
Migratory movement (biotic)	1.0	0.5	0.5	1.0	1.0	0.5	0.5	1.0	
Sediment transport	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
Floodplain connectivity	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
Banks and Riparian zone vegetation									
Bank geometry/form	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
Bank roughness/vegetation	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
Structure and extent of riparian vegetation *	0.5	0.5	1.0	1.0	0.5	0.5	0.5	0.5	2012
	Manual Annual		The W. Star	NR 5/20		× 17			

- 23263 Forthie Water (summer 2014).
 - Original channel type probably actively meandering.
 - Bad status for morphology.

www.sepa.org.uk

Brenzieshill

- 3902 Dry Burn (September 2008).
- Original channel type probably actively meandering.
- WB moderate status for morphology (reach at Good).

Vest Mains

Brunt Hill

The

Ecological Constituity	Pool siffle sta	- will	- 368		Active meandaring			1
	Fourtime etc				Active meandering			
Attribute	ME-LI			Ľ	LE-LI			
Channel	fish	invert	macro	tot	fish	invert	macro	
Hydraulic geometry								
Planform	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
Cross-section	1.0	0.5	1.0	1.0	0.5	0.5	0.5	
Slopelgradient	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
Substrate condition								
Size	1.0	0.5	1.0	1.0	0.5	1.0	1.0	
Compactness	1.0	0.5	1.0	1.0	0.5	1.0	1.0	
Embeddedness	1.0	0.5	1.0	1.0	0.5	1.0	1.0	
Erosion/deposition character								
Lateral rate of adjustment	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
Bar character (Presence and form)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
Bedform pattern	1.0	0.5	0.5	1.0	0.5	0.5	0.5	
In-channel vegetation								
Structure and extent of instream vegetation *	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
Structure and extent of woody debris *	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
Flow								
Biotope diversity/ complexity	1.0	0.5	1.0	1.0	0.5	0.5	0.5	
Continuity								
Migratory movement (biotic)	1.0	0.5	0.5	1.0	1.0	0.5	0.5	
Sediment transport	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
Floodplain connectivity	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
Banks and Riparian zone vegetation								
Bank geometry/form	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
Bank roughness/vegetation	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
Structure and extent of riparian vegetation *	0.5	0.5	1.0	1.0	0.5	0.5	0.5	

Some discussion points

- How might fish (plant or insect) data be used to improve the ecological sensitivity assessment?
- How might we develop an ecologically meaningful assessment of lost habitat area?