

ENVIRONMENTAL RADIOLOGICAL MONITORING IN SCOTLAND

Radiological Monitoring Technical Guidance Note 2 Reviewed October 2019 RS-JG-018

Every day SEPA works to protect and enhance Scotland's environment, helping communities and businesses thrive within the resources of our planet.

We call this One Planet Prosperity

For information on accessing this document in an alternative format or language please either contact SEPA by telephone on 03000 99 66 99 or by email to equalities@sepa.org.uk

If you are a user of British Sign Language (BSL) the Contact Scotland BSL service gives you access to an online interpreter enabling you to communicate with us using sign language.

http://contactscotland-bsl.org/

www.sepa.org.uk

03000 99 66 99

Strathallan House, Castle Business Park, Stirling, FK9 4TZ

Сс	ontents	
1	Introduction	5
2	Scope	5

3	En	vironmental monitoring objectives	6
4	En	vironmental monitoring principles	6
		gure 1 - Process for designing, implementing and reviewing environmental diological monitoring programmes	9
6	De	esign of environmental monitoring programmes	. 10
	6.1	General	. 10

	6.2 Collate information							
6.3 Assess site impact								
	6.4	Establish monitoring objectives12						
	6.5	Determine what to monitor, where and how often						
	6.6	Determine how to monitor and sample14						
	6.7	Determine analysis requirements14						
	6.8	Review monitoring programme15						
7	Q	uality assurance						
	7.1	General Requirements						
	7.2	Training16						
	7.3	Uncertainty17						
8	Н	ealth, safety and environment17						
9	R	eporting, records, assessment and interpretation18						
9.1 Reporting and records								
	9.2	Assessment and Interpretation19						
1(0 Definitions							
1	1 References							
	Т	Table 1 Generic monitoring objectives with guidance/criteria						

Table 2 Sample types which can be used to meet objectives	. 27
Table 3 – Guidance on what to monitor, where and how often	. 31
Table 4 – Guidance on how to monitor and sample	. 63
Table 5 – Guidance ambient air monitoring for radioactivity	. 91
Table A1.2 Interpretation of IAEA Safety Standard for environmental monitoring associated with releases to water	. 97
Figure A1.1 Interpretation of IAEA Guidance for number of samples – Releases t air	
Figure A1.2 Interpretation of IAEA Guidance for number of samples – Releases t water	

About this technical guidance note

This guidance note was originally published jointly by the Environment Agency, Scottish Environment Protection Agency and the Food Standards Agency. It was been developed by the Radiological Monitoring Standards Working Group (RMSWG). The RMSWG has representatives from the Environment Agency, Scottish Environment Protection Agency, Nuclear Decommissioning Authority, Food Standards Agency, nuclear industry and experts. The RMSWG is a sub-group of the Nuclear Industry Liaison Group.

The guidance was reviewed following changes to legislation in Scotland and this version only applies in Scotland.

1 Introduction

- 1.1 Environmental radiological monitoring is undertaken by operators to comply with their authorisations under the Environmental Authorisations (Scotland) Regulations 2018 (EASR). This monitoring is also carried out by the Scottish Environment Protection Agency (SEPA) and Food Standards Scotland in support of their regulatory roles under EASR and other national and international obligations.
- 1.2 This document provides guidance on planning and implementing routine environmental radiological monitoring programmes. Guidance is provided on the objectives and principles underpinning monitoring programmes, for both operators and regulators, providing clarity on the monitoring roles. The process for defining monitoring programmes, including stakeholder engagement, where appropriate, is also presented.
- 1.3 The guidance considers programme design, giving guidance on what to monitor, where and how often. Further guidance is provided on the monitoring and sampling techniques to be employed.

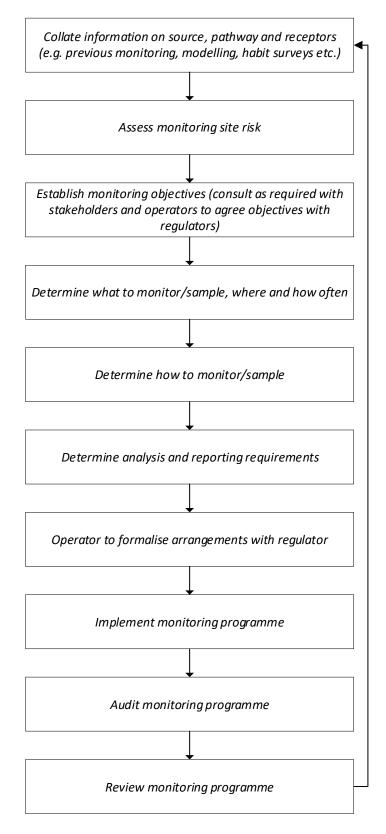
2 Scope

- 2.1 This document provides good practice guidance on how to design environmental radiological monitoring programmes. This guidance is aimed primarily at designing new or reviewing existing environmental radiological monitoring programmes around nuclear licensed sites for the purpose of monitoring the environmental effects of authorised discharges. Monitoring for short term releases would follow similar practices, but with increased frequency of monitoring and numbers of locations. It also applies to programmes designed to meet international obligations. The guidance may be applied to environmental monitoring programmes around non-nuclear sites, if this monitoring is required. It will help nuclear operators comply with the requirements to use Best Practicable Means when designing and implementing their environmental radiological monitoring programmes.
- 2.2 Although incident and effluent monitoring are outside the scope of this guidance, a routine monitoring programme should have elements designed to indicate if there has been an accidental or unauthorised release. Follow up characterisation of any such unauthorised release or incident would then be undertaken as a separate investigation. The sampling and monitoring techniques to be employed may be based on those presented in this guidance.
- 2.3 Scientific investigations into the behaviour of radionuclides in the environment are outside the scope of this guidance, except for routine monitoring to identify significant changes in the environment (e.g. in dynamic estuaries). The data from routine radiological monitoring programmes may be used to supplement these scientific studies.
- 2.4 Baseline radiological monitoring prior to the development of a new nuclear site or new discharge is outside the scope of this guidance as this will usually be defined as an investigation project. However, as with scientific investigations, data from routine monitoring programmes may supplement baseline studies, as long as any constraints on the data are understood.

3 Environmental monitoring objectives

- 3.1 For any monitoring programme it is important that there are clear objectives to be achieved. Generic objectives for environmental radiological monitoring programmes are:
 - Objective A Assess total representative person (see definitions) dose.
 - Objective B Assess dose as an operator's performance measure.
 - Objective C Assess total impact on wildlife (e.g. dose). [Ref 3]
 - Objective D Assess impact on wildlife as an operator's performance measure (e.g. dose).
 - Objective E Provide public and stakeholder reassurance.
 - Objective F Check / complementary monitoring.
 - Objective G Assess background (very far field).
 - Objective H Assess long term trends (Indicator).
 - Objective I Comply with international obligations.
 - Objective J Detect abnormal, fugitive and unauthorised releases (Indicator).
 - Objective K Understand / monitor behaviour of radio-nuclides in the environment.
- 3.2 Further definitions of these generic objectives are provided in Table 1. The table indicates where the responsibility lies for monitoring to meet a specific objective and gives some guidance and criteria for when it would be necessary and what should be considered in the monitoring.
- 3.3 These objectives apply to routine environmental radiological monitoring programmes. Some programmes may be undertaken to achieve other objectives, for example:
 - Workforce reassurance.
 - Baseline environmental monitoring for a new source or discharge.
 - Scientific investigations.
 - Incident investigations.

4 Environmental monitoring principles


- 4.1 Environmental radiological monitoring programmes should be designed to meet the following generic principles (not necessarily in order of merit):
 - **Principle 1 Health and Safety** The benefits of the programme should be balanced against health and safety requirements and elements with a potentially elevated risk only proceeded with if the risk can be reduced to an acceptable level.

- **Principle 2 Benefits exceed impacts** The benefits of the programme should exceed any significant environmental detriment (i.e. be environmentally sustainable).
- **Principle 3 Satisfy international requirements** Programmes should satisfy or be compatible with international requirements or guidance where available (e.g. IAEA Safety Standard on environmental and source monitoring [Ref 4], Article 35 of the Euratom Treaty).
- **Principle 4 Objective based** Programmes should be based on defined objectives and monitoring of different exposure pathways clearly linked to at least one objective.
- Principle 5 Proportionate The design and management of programmes should be proportionate to past, current and future potential impact of discharges on humans and wildlife. Other considerations in determining the proportionality of the programme will be the cost, the environmental impact of undertaking the programme, the type of environment (including how dynamic it is), the likely behaviour of radionuclides in that environment (including half-life) and current state of knowledge. It will generally be proportionate to have a larger environmental monitoring programme where the dose from discharges to air or water exceed 0.02 mSv y⁻¹ to ensure that a realistic dose assessment can be performed [Ref 5]. It will not be generally proportionate to require monitoring where the dose from a particular pathway is <0.001 mSv y⁻¹, unless monitoring is required to satisfy objectives related to assessing background and long term trends, complying with international obligations, detecting abnormal, fugitive and unauthorised releases, understanding behaviour of radionuclides in the environment or be useful for check monitoring (objectives F, G, H, I, J and K).
- **Principle 6 Complementary** The regulators should ensure that their programmes and those of the operator address all the appropriate monitoring objectives whilst avoiding unnecessary duplication.
- **Principle 7 Satisfy stakeholder concerns** Programmes should consider legitimate stakeholder concerns and expectations, as far as reasonably practicable.
- Principle 8 Based on authorisations Specific radionuclides should be selected for the monitoring programme, based on the source term (taking into account the magnitude of release and environmental impact) and radionuclides limited by EASR authorisations, including those that could be released as fugitive emissions.
- **Principle 9 Optimised** Programmes should be optimised to achieve the maximum number of objectives from a minimum number of samples, ensuring that sufficient monitoring data of an acceptable quality are collected for all the objectives to be achieved.
- **Principle 10 Meet quality standards** Programmes should be undertaken to defined quality standards equivalent to ISO9001, ISO 14001 and ISO17025 [Refs 6-8].
- Principle 11 Appropriate performance criteria Performance criteria for the monitoring
 programme (in particular uncertainty criteria, limit of detection, analysis turnaround) should be
 designed to allow the objectives to be met, whilst ensuring proportionality (see Principle 5).
 Different objectives will have different performance criteria (e.g. for detecting abnormal releases
 a relatively quick analytical turnaround will be important, but a higher detection limit may be
 acceptable).

5 Process for designing environmental monitoring programmes

- 5.1 Figure 1 outlines the process which should be used by regulators and operators for designing, implementing and reviewing environmental monitoring programmes. Operators should seek agreement of the monitoring objectives for their programmes from the relevant regulator and will need to formalise the monitoring arrangements with the regulator prior to implementation. More guidance is provided in the next section on how to design the monitoring programmes.
- 5.2 This process may be used for designing new or reviewing existing monitoring programmes. Clearly there will be more information available for existing monitoring programmes.
- 5.3 Once the programmes have been implemented there will need to be review processes in place to ensure they remain fit for purpose. More guidance is provided in section 6.8.

Figure 1 - Process for designing, implementing and reviewing environmental radiological monitoring programmes

6 Design of environmental monitoring programmes

6.1 General

- 6.1.1 The International Atomic Energy Agency (IAEA) has published a safety standard on environmental and source monitoring [Ref 4]. It provides information for sampling and monitoring types, primarily aimed at terrestrial and freshwater environments, with suggested sampling frequencies. This standard provides only limited guidance on the number of locations which should be monitored around a nuclear site. Appendix 1 provides an interpretation of the IAEA Safety Standard with low, medium and high numbers of monitoring locations to help define a range of sample numbers per year. This interpretation has been used to provide a framework for the guidance in this document on what should be monitored, where and how often.
- 6.1.2 The United States Environmental Protection Agency has developed a systematic planning approach using the Data Quality Objectives Process (DQO) which provides information on how to apply systematic planning to generate performance and acceptance criteria for collecting environmental data to sufficient quantity and quality to support the goals of a study [Ref 9]. A series of logical steps are used that apply to both decision making (e.g. compliance/non-compliance with a standard) and estimation (e.g. ascertaining the mean concentration level of a contaminant). The Data Quality Objectives process was not developed specifically for <u>routine</u> environmental monitoring programmes and the Environment Agencies and Food Standards Agency are developing their position on how it may be used for this purpose. It may have the potential to support detailed consideration of particular aspects of a monitoring programme (e.g. frequency of soil sampling). However, undertaking a full DQO assessment for every sample type/objective combination for a routine monitoring programme is likely to be resource intensive.

6.2 Collate information

- 6.2.1 When designing a new monitoring programme it will be necessary to develop a conceptual model of the source, pathway and receptors which will include consideration of the following:
 - The type of facility and the stage of its life-cycle (e.g. commissioning, operational, decommissioning).
 - Information about the environment around the site. This could include the land use types (including details on agriculture), water body types, water flow rates, freshwater and seawater boundaries in estuaries, sites of accretion and erosion in rivers and estuaries.
 - Information from existing monitoring programmes or from monitoring programmes at similar sites. In particular, this might identify likely areas where radionuclides might accumulate.
 - Information from habit surveys (existing and/or new). Guidance for undertaking habit surveys
 is provided by the National Dose Assessment Working Group (NDAWG) [Ref 10]. These will
 identify what sorts of food are being consumed and from where and also where people spend
 their time. This will be valuable information for designing monitoring programmes to meet the
 dose based objectives (Objectives A and B).

- Modelling and existing monitoring data to predict the behaviour of radionuclides in the environment around a site, taking into account meteorological conditions (such as wind speed and direction), tidal currents etc. This will help target the areas of highest activity concentration or likely activity concentrations in places which might lead to exposure of people or wildlife.
- Trial monitoring (e.g. using instruments) to investigate the areas of highest activity concentration or likely activity concentrations in places which might lead to exposure of people or wildlife.
- Suitability of monitoring locations to meet the required objectives. For example where the dose impact of current discharges is being assessed by monitoring estuarine sediments, an area of accreting sediment will need to be monitored.
- Investigate the likely spatial and temporal variability in activity concentrations at monitoring locations to ensure that it is acceptable for the purpose of the objective, using monitoring trials or the judgement of suitably qualified and experienced persons. This will be important if the exact location for sampling could vary (e.g. due to access difficulties).
- 6.2.2 When reviewing an existing radiological monitoring programme it will be necessary to consider the same factors as those for the new programmes, together with the following:
 - Stakeholder expectations about monitoring for reassurance purposes.
 - Impact on long-term trend data.
 - Knowledge of optimal sample/monitoring types (e.g. dose rate rather than soil analysis).

6.3 Assess site impact

- 6.3.1 A useful first step in designing a monitoring programme is to establish the level of impact associated with the site and the presence of sensitive receptors. The term impact is used in a wide sense to include both environmental impacts (from discharges and potential from abnormal releases) and business risks (e.g. reputational risks). The magnitude of effort in designing and carrying out the monitoring programme should be commensurate with this level of impact. The levels of impact are defined as follows:
 - Programmes for lower impact sites The discharges are reasonably uniform with a low
 potential for abnormal releases, the environment is well characterised, the dose to the
 representative person (assessed from initial monitoring results or modelled at discharge limits) is
 less than 0.02 mSv y⁻¹ for all exposure pathways; and there is low public concern.
 - **Programmes for higher impact sites** There is the potential for abnormal releases; the environment is complex and difficult to characterise; the dose to the representative person (assessed as above) is greater than 0.02 mSv y⁻¹; or there is high public concern.
- 6.3.2 Hence, in general, where the impact is low, the monitoring programme would be expected to be relatively small. The minimum programme for a lower impact site is only likely to need to address the objectives of providing pubic and stakeholder reassurance, and detecting abnormal, fugitive and unauthorised releases. Also the quality assurance requirements can be less stringent. A quality

management system would still be required striving to meet the principles of the relevant ISO standards, but not necessarily accredited. Assessing the impact helps ensure compliance with Principle 5 on proportionality.

- 6.3.3 For sites with the lowest impact (e.g. dose from discharges to air or water are less than 0.001 mSv y⁻¹, no legitimate public concern and no potential for abnormal releases) there may be no requirement to address even the minimum objectives of providing public and stakeholder reassurance, and detecting abnormal, fugitive and unauthorised release, and hence no programme will be required.
- 6.3.4 As site operations change and move through decommissioning and into care and maintenance the levels of impact associated with them will change and this should be taken in to account when reviewing the programme (see section 6.8).

6.4 Establish monitoring objectives

- 6.4.1 The relevant monitoring objectives should be established, when designing a routine radiological monitoring programme (see Section 3 and Table 1). This satisfies Principle 4 on objectives. The monitoring objectives which are selected will reflect who is undertaking the programme, its scope and the site impact. Hence an operator will not be concerned with the objectives relating to the total representative person dose (Objective A) or very far field backgrounds (Objective G). A regulator's programme for monitoring around all nuclear sites may require most of the monitoring objectives to be achieved, whereas an operator's programme for a single nuclear site will have a smaller number of objectives. It is unlikely that the objectives relating to dose and impact on wildlife (Objectives A, B, C and D) will be relevant for a low impact site programme.
- 6.4.2 The sample or monitoring types which may be used to help achieve each objective are shown in Table 2.
- 6.4.3 Operators should ensure that the regulators are satisfied with the selected monitoring objectives. For all monitoring programmes, it may be appropriate to consult with local stakeholders over the selected monitoring objectives.

6.5 Determine what to monitor, where and how often

- 6.5.1 Guidance on what to monitor or sample, where and how often, to meet different monitoring objectives is provided in Table 3. Hence, this guidance can be used to select the monitoring and sampling types which meet the programme objectives and the sampling or monitoring approach (e.g. location and frequency of monitoring) can then be determined. Not all the sample/monitoring types in Table 3 will apply to every situation, for example sites with High Volume Air Samplers (HVAS) may not deploy passive shades and vice versa for atmospheric particulate sampling.
- 6.5.2 Where the behaviour of radionuclides can be affected by changing environmental conditions such as meteorology, consideration should also be given to collecting supplementary data e.g. wind direction and wind speed. This could be used to optimise the position of monitoring points and the data could also be used to confirm the source of any unusual or elevated measurements.
- 6.5.3 The total number of samples or monitoring activities (monitoring locations at different times) around a nuclear site or in a national programme should fall within the range of total samples/monitoring activities per year indicated in Table 3 for either the regulator or operator. It is expected that the total

number of samples or monitoring activities will lie in the bottom half of the range for programmes for lower impact sites and in the top half for programmes for higher impact sites. A larger number of samples would be required if doses approach the dose constraint.

- 6.5.4 Where a sampling or monitoring type is being undertaken to fulfil a number of objectives (which is the recommended approach and will often be the case) the total number of samples or monitoring activities should take account of the fact that some samples or monitoring activities will address more than one objective. Hence, double-counting of samples or monitoring activities should be avoided when calculating the total number of samples or monitoring activities.
- 6.5.5 Often the monitoring for one objective will satisfy the monitoring requirements for a number of other objectives, for example monitoring to assess total representative person dose (Objective A) could also embody monitoring to provide public and stakeholder reassurance (Objective E). The exceptions are where sampling or monitoring is carried out to assess the background, impacts on wildlife (in some cases) and for detecting abnormal or fugitive releases. Where there are national programmes designed to assess the background or comply with international requirements, additional site specific background sampling requirements may not be required.
- 6.5.6 Table 3 indicates which programme is meeting an objective i.e. regulator or operator through the use of prefixes R and O. Where different samples/monitoring would be required to meet different objectives e.g. for the regulator programme, assess total representative person dose (Objective A) and assess background (Objective G) the components of the programme are indicated as R1 and R2. Where the same samples/monitoring or a subset of these can be used to fulfil other objectives this is indicated by putting the objective code in brackets. For example for 3.4 in Table 3 "provide public and stakeholder reassurance" (Objective E) could be a sub-set of the "assess total representative person dose" hence for 3.4 of Table 3 against Objective E this is indicated as (R1). This does not indicate priority between the objectives, but is based on the objective for which the greatest number of samples is required.
- 6.5.7 Where regulators and operators take similar samples to fulfil slightly different objectives (e.g. for the regulator to assess total representative person dose, Objective A, and the operator to assess dose as a performance measure, Objective B, these samples or monitoring activities may also fulfil the check/complementary monitoring objective (Objective F). Also, for programmes for lower impact sites, it may be appropriate for the regulator to carry out monitoring to achieve a particular objective, rather than the operator. For the assessment of background (very far field) (Objective G) if there is a national programme being undertaken there may be no need to take additional background samples for a particular site.
- 6.5.8 When deciding upon the frequency or timing of sampling, the following should be considered:
 - Some objectives will require higher frequencies (e.g. detecting abnormal releases) whilst lower frequencies will be acceptable for other objectives, for example check monitoring (Objective F) or far field backgrounds (Objective G).
 - Frequencies may be lower where the discharge profile is relatively stable (i.e. quantities discharged are relatively similar on a month by month or quarter by quarter basis). Monitoring may be timed to occur after a release if it occurs very infrequently.
 - Higher frequencies may be necessary where short-lived radionuclides are being monitored.

- Frequencies should be consistent with the rate of change observed in the environment (i.e. lower rates of change will lead to lower frequencies).
- Frequencies should be higher where action levels (e.g. dose constraint) are approached.
- Monitoring may be timed to coincide with particular food growing seasons or activities of members of the public (e.g. beach occupancy).
- If short term measurement campaigns are being undertaken, for example for measurement of air particulate using HVAS, seasonal factors such as wind direction should be taken into consideration.
- 6.5.9 The final monitoring programme design should satisfy all the monitoring principles.

6.6 Determine how to monitor and sample

- 6.6.1 Guidance on how to monitor different sample types to achieve particular objectives is provided in Table 4.
- 6.6.2 For each sample or monitoring type, there are general considerations to be taken into account, along with guidance on the actual sampling / monitoring technique and subsequent initial sample preparation. For a particular sample or monitoring type, the process carried out may need to be different to meet different objectives hence the tables in Table 4 present the guidance grouped by the objectives which can be met by that sampling or monitoring technique. For example, undertaking sediment sampling for detecting abnormal releases requires surface scrape samples to be taken, but core samples would be more appropriate for understanding the behaviour of radionuclides in the environment.

6.7 Determine analysis requirements

- 6.7.1 For current discharges, analysis should be considered for those radionuclides which are limited in discharge permits or are significant components of a group limit (e.g. strontium-90 limited under any other beta/gamma emitting radionuclide group limit). This satisfies monitoring principle 8 on programmes being based on authorisations. Other radionuclides may be required as a result of international obligations or backgrounds. Proven surrogate radionuclides may be used (e.g. where the radionuclide fingerprint is relatively stable).
- 6.7.2 For historical discharges, and potential abnormal releases account needs to be taken of what radionuclides have been or could be expected to be released. As for current discharges, the programme can be optimised to those radionuclides giving the highest dose or known to accumulate in the environment and proven surrogates could be used.
- 6.7.3 For both current and historical discharges, in-growth of daughters may need to be considered (e.g. americium-241 from plutonium-241).
- 6.7.4 Results need to be appropriate for the monitoring objective for which they are gathered, for example limits of detection need to be stringent enough to allow useful data to be generated, but not too onerous as to incur excessive cost. As a guide, limits of detection should be no higher than the activity concentration which could give rise to a dose of 0.0003 mSv y⁻¹for the dose related objectives

(Objectives A and B) and public reassurance objective (Objective E) or no higher than 10% of the peak concentration for the indicator objectives (Objectives H, J). Different analytical methods can be used, again taking into account the use to which the data will be put and whether a screening value is good enough or accurate information is required.

- 6.7.5 Clearly, samples containing radionuclides with short radioactive half-lives need to be analysed quickly. The speed with which an analysis can be undertaken will also be important where there is a need to have an early warning of abnormal or fugitive release. In this case, there will be a balance between the speed of the analysis to satisfy the early warning requirement and ensuring that the results are of sufficient quality, particularly as there may only be a few results.
- 6.7.6 Only a limited set of radionuclides need be analysed for samples collected to meet the assessment of long-term trends objective (Objective H).

6.8 Review monitoring programme

- 6.8.1 Both operator and regulator programmes should be subject to review on a periodic basis, this would typically be an annual high level review, with a more thorough review within a 3-5 year timeframe. The frequency of this will be dependent on the variability of discharges and environmental concentration and the availability of new information (e.g. habit surveys, changes on site (operational to decommissioning), changes in farming practices etc).
- 6.8.2 Audits of monitoring programmes may also be undertaken by operators and regulators and the findings of these audits should also feed in to the review process.
- 6.8.3 It may be appropriate for the review to involve local communities and to ensure they are aware of the results of the programme and have the opportunity to raise issues.
- 6.8.4 The review should consider whether the objectives for the monitoring programme are still valid. If other objectives are identified, these may already be achievable through the current programme, if not, further monitoring would be required. If objectives are no longer required care needs to be given to removing monitoring to ensure that samples are not being removed that are still required to meet other objectives.
- 6.8.5 If over time the results are consistent and at, or close to, the limit of detection and there is a decreasing discharge profile the frequency of monitoring could be reduced. The number of locations (spatial distribution) could also be reduced if the data collected are showing the same trends and similar magnitude of results.
- 6.8.6 As a site moves from an operational to decommissioning status, consideration needs to be given to changes in the discharge, taking in to account temporary increases in certain nuclides as cleanup is undertaken or the absence of others. The possibility of new fugitive release pathways – e.g. dust/particulate from demolition work being created, also needs to be considered.
- 6.8.7 Once a site moves in to care and maintenance or a state of quiescence some surveillance monitoring may still be required to meet the objectives of detecting abnormal, fugitive and unauthorised releases and public reassurance. The magnitude of the programme required will be related to the level of clean up undertaken before being put in to quiescence, as this will affect the potential for releases.

7 Quality assurance

7.1 General Requirements

- 7.1.1 Organisations undertaking routine radiological monitoring should work within a documented management system, ideally certified to ISO 9001 [Ref 6], using suitable experienced and qualified personnel. This satisfies monitoring principle 10 on meeting quality standards. Documented procedures should be available to cover all aspects of the work.
- 7.1.2 Sampling An audit trail of all samples should be maintained from the point of collection to final analysis, this can be achieved using a robust chain of custody. Samples should be transported to and stored in the laboratory in a secure manner under storage conditions that minimise or eliminate loss or change of the principal constituents under investigation. Samples should be retained to enable future analysis minimum retention periods shall be agreed in consultation with the regulator.
- 7.1.3 Sample preparation Sample preparation should ensure that a homogeneous sub-sample is taken for analysis. Drying and hand mixing of soils or sediments prior to sub-sampling should be acceptable for gamma spectroscopy where a relatively large sub-sample is used (e.g. 500g). However, drying, grinding and sieving prior to sub-sampling should be carried out where a small sub-sample (e.g. 5g) is to be taken for radiochemical analysis.
- 7.1.4 Analysis Methods should meet the requirements of any relevant international standards, British Standards, or other nationally recognised standards. The analytical methods should be adequately validated and controlled such that they are or could be accredited by the United Kingdom Accreditation Scheme (UKAS) (or equivalent) under BS EN ISO/IEC 17025:2005 'General requirements for the competence of testing and calibration laboratories'. Particular attention should be paid to the requirements on method validation, instrument calibration and performance testing. Analytical laboratories should participate in national/inter-national (e.g. NPL) inter-laboratory comparisons (e.g. annually) to assist in quality assurance. Where possible, inter-comparisons should be chosen which relate not only to relevant determinands, but also relevant sample type. Performance criteria should be defined for acceptability of results to satisfy monitoring principle 11, including limits of detection, analysis of standards, analysis turnaround etc.

7.2 Training

- 7.2.1 The experience, training and technical competence of personnel assigned to do the monitoring will directly affect the quality of the data being obtained. Hence only suitably qualified and experienced people (SQEP) should carry out the monitoring, sampling, analysis and data assessment/reporting. Continued competence should be assessed by internal audit and formal SQEP reviews where appropriate. The degree of experience and qualifications required will be matched to the complexity of the analysis being undertaken and level of uncertainty that is acceptable on a result, which will be influenced by whether the site is assessed as lower or higher impact site.
- 7.2.2 Role profiles defining the required level of education and experience should be produced. The required training and qualifications should be determined to be in accordance with the procedures to be undertaken.

- 7.2.3 Training should take the form of studying and understanding the techniques/procedures and on the job training to gain experience. The training should be documented with evidence of competence (e.g. independently collecting integrity-assured and traceable samples or conducting a field measurement with the results falling within acceptable Quality Control limits) required before a person's competence is signed off.
- 7.2.4 Re-training or refresher training should be required if work has not been undertaken for a period greater than 12 months. Where the sampling period is greater than 12 months (e.g. for annual samples) a previously trained and competent person may follow a written procedure to take those samples.
- 7.2.5 Training should be documented and training records kept and maintained.

7.3 Uncertainty

- 7.3.1 The measurement methods should be reviewed to identify all potential sources of uncertainty. The significant sources of uncertainty should be quantified and the uncertainty components combined at the 95th percentile level of confidence. The measurement uncertainty should be reported with the measurement result.
- 7.3.2 The generally accepted approach to evaluating and expressing uncertainties in measurements undertaken by testing and calibration laboratories is given in The Guide to the Expression of Uncertainty in Measurement, first published in 1993 by ISO, Geneva. As this is a complex document NPL have produced a guidance note presenting principles and guidance for the estimation of measurement uncertainty [Ref 12].

8 Health, safety and environment

- 8.1 Anyone conducting a monitoring programme must comply with the health and safety arrangements of their organisation and personnel should be competent and trained in relevant health and safety issues. In particular, risk assessments (generic and/or site specific) should be documented and in place and a dynamic risk assessment (at point of work) procedure employed. These risk assessments will need to consider all the hazards likely to be encountered including, but not limited to:
 - Tides
 - Quick sand
 - Rock falls
 - Unexploded ordnance
 - Wildlife (e.g. snakes, bees)
 - Livestock
 - Electric fences
 - Slopes

- Biological hazards
- Weather (e.g. cold, sunstroke)
- Uneven ground
- Work at heights
- Lone working
- Driving
- Railways/roads
- Ground penetration and contact with

electrical cables

- Working near water
 Manual handling
- Contamination

Ionising radiation

• Sampling equipment (e.g. cutting

devices)

- 8.2 Control measures should be used to reduce the risk to an acceptable level before starting work. Control measures can be procedural, engineered or personal protective equipment.
- 8.3 Accidents or near misses should be reported, as defined in organisations' safety procedures, to allow lessons to be learnt and aid in the development of procedures and guidance to avoid future accidents.
- 8.4 Procedures should be defined for the appropriate action to be taken, if a discreet active item (e.g. stone, plastic fragment, particle) or a localised area of contamination are identified. These will also need to address health and safety requirements and also the responsibility for custody and detailed analytical requirements.
- 8.5 Procedures should be followed and actions taken where necessary to address bio-security to protect wildlife and farm animals from the spread of diseases (e.g. foot and mouth disease, fungal infections).
- 8.6 Organisations should take account of the relevant requirements of ISO 14001 including the need to identify the environmental effects of their monitoring programmes (e.g. emissions during driving, use of disposable items, use and disposal of chemicals) and implement measures to minimise these environmental effects. Sites of Special Scientific interest / Natura 2000 sites should be respected.

9 Reporting, records, assessment and interpretation

9.1 Reporting and records

- 9.1.1 Reports for verified environmental monitoring results should be produced in a timely manner (as defined in the CEAR for operators or work specification for regulator programmes) so that best use can be made of the data and early indications of changes in the environment can be identified and acted upon.
- 9.1.2 Reports should include or reference information on the methods used and the quality assurance process. The results should be presented with information on units, uncertainties and detection limits. It should be clearly stated whether the results are decay corrected to the date of sampling.
- 9.1.3 Procedures should be in place for the early notification of unusual results, particularly those that are unusually high. It may help if a table of "warning levels" is maintained to trigger this consistently. There are various stages where this can occur:
 - Directly following sampling in the field, if dose rate monitoring is being undertaken as would be good practice for samples coming from areas of potentially high activity.
 - Following receipt of samples at the laboratory where dose rate readings should be taken.
 - Directly following analysis where judgement should be used to determine whether they are significantly above normal environmental levels. This judgement should not only be based on reviewing the actual results, but also take into account knowledge of other factors such as

variation in sediment grain size and characteristics at a particular location. Appropriate predetermined action, trigger or warning levels may be set up to aid in this process.

9.1.4 Records should be kept for a defined period of time (as specified by the regulator), the information should be traceable and retrievable, taking account of changing storage technology.

9.2 Assessment and Interpretation

- 9.2.1 Results should be assessed in the context of the objectives for which the monitoring was designed. For some of these objectives there will be applicable standards with which results should be compared, e.g. Generalised Derived Limits (GDLs) [Ref 13], or a percentage of them (e.g. 10%), for dose related objectives (Objectives A, B). For these it may also be appropriate to undertake dose assessments with the data and compare with dose limits. For others, e.g. public reassurance (Objective E) or assessing background (Objective G), comparison with previous results, action levels (e.g. 3 or 4 standard deviations) and natural backgrounds may be most appropriate. Operators may set criteria for determining what might indicate an abnormal release and what subsequent action(s) should be taken.
- 9.2.2 Checks on the internal consistency of results can also be undertaken for example, where appropriate and taking account of uncertainties, the sum of the alpha or beta/gamma emitting radionuclides can be compared with total alpha or total beta measurements and consistency of results within decay series can be checked. Data can also be compared with other data sets such as those published in the Radioactivity in the Environment series of reports (RIFE) [e.g. Ref 14].
- 9.2.3 The assessed level of site impact should be taken into consideration for the degree of interpretation and assessment required. For higher impact sites it may be appropriate to utilise the various statistical approaches available for further assessing results, for example looking at averages and standard deviations, undertaking trend analysis (looking for rising and falling trends) this could be visual or with software, assessing whether the data are censored (i.e. are limit of detection data truncating the data set so the true distribution is unknown), using a box and whisker approach (i.e. graphically depicting the data through their five-number summaries: sample minimum, lower quartile (Q1), median (Q2), upper quartile (Q3), and sample maximum) or looking for the first arrival of a finite value (rather than Limit of Detection) in a data set. For lower impact sites, simple inspection of tabular or graphical presentation of monitoring results may be sufficient.

10 Definitions

Decision threshold – defined in ISO 11929-7 [Ref 15] as the "the fixed value of the decision quantity (random variable for the decision whether the physical effect to be measured is present or not) by which, when exceeded by the result of an actual measurement of a measurand quantifying a physical effect, it is decided that the physical effect is present". Further guidance on the decision threshold is provided in the Radiological Monitoring Technical Guidance Note 1: Standardised Reporting of Radioactive Discharges for Nuclear Sites [Ref 16].

Detection limit – defined in ISO 11929-7 [Ref 15] as the "smallest true value of the measurand that is detectable, with a given probability of error, by the measuring method". Further guidance on the detection limit is provided in the Radiological Monitoring Technical Guidance Note 1: Standardised Reporting of Radioactive Discharges for Nuclear Sites

Exposure pathway – The route in the environment through which people or wildlife may become exposed to radioactivity or radiation. For example, inhalation of radionuclides in air, drinking of water containing radionuclides, external radiation from walking over sediments containing radionuclides.

Indicator – term used in relation to a sample type that is rapidly responsive to changing activity concentrations.

Non-nuclear premises – Premises with an EASR authorisation which is not a nuclear site (e.g. university, hospital, pharmaceutical company).

Nuclear site – A site that has a nuclear site licence as defined in section 26 of the Nuclear Installations Act 1965 and Nuclear Installations Regulations 1971. Also included are tenants on nuclear licensed sites and those sites which would be nuclear licensed sites if EASR regulation 78 did not apply.

Representative person – An individual receiving a dose that is representative of the more highly exposed individuals in the population. This term is equivalent to and replaces the previous concept of the 'average member of the representative person' [Ref 17].

11 References

1.

- 2. The Environmental Authorisations (Scotland) Regulations 2018
- Beresford, N., Brown, J., Copplestone, D., Garnier-Laplace, J., Howard, B.J., Larsson, C-M., Oughton, O., Pröhl, G., Zinger, I. (eds.) 2007.D-ERICA: An INTEGRATED APPROACH to the assessment and management of environmental risks from ionising radiation. Description of purpose, methodology and application.
- 4. IAEA Safety Standards Series No. RS G-1.8. Environmental and Source Monitoring for Purposes of Radiation Protection. Safety Guide. IAEA, Vienna, 2005.
- 5. Environment Agency, Scottish Environment Protection Agency, Northern Ireland Department of Environment, National Radiological Protection Board and Food Standards Agency (2002). Authorisation of Discharges of Radioactive Waste to the Environment. Principles for the Assessment of Prospective Public Doses. <u>http://publications.environment-agency.gov.uk/pdf/PMHO1202BKLH-e-e.pdf.</u>
- 6. ISO 9001:2000 Quality Management Systems requirements
- 7. ISO 14001: 2004 Environmental Management Systems requirements with guidance for use
- 8. ISO/IEC 17025 General requirements for the competence of testing and calibration laboratories.
- 9. Guidance on Systematic Planning using the Data Quality Objectives Process. EPA QA/G-4. United States Environmental Protection Agency, EPA 240/B-06/001, February 2006

- 10. Acquisition and Use of Habits Data For Radiological Assessments. National Dose Assessment Working <u>Group. www.ndawg.org</u> (in preparation).
- 11. Leonard, K.S. RandD Best Practice Techniques for Environmental Radiological Monitoring. Environment Agency Science report SC030308/SR 2007.
- 12. Birch, K: Estimating Uncertainties in Testing. Measurement Good Practice Guide No.36, March 2001. NPL.
- Revised Generalised Derived Limits for Radioisotopes of Strontium, Ruthenium, Iodine, Caesium, Plutonium, Americium and Curium. Application of Generalised Derived Limts. Documents of the NRPB Volume 9 No 1 1998.
- 14. Environment Agency, Environment and Heritage Service, Food Standards Agency and Scottish Environment Protection Agency. Radioactivity in Food and The Environment, 2008. RIFE-14.
- International Standards Organisation. Determination of the detection limit and decision threshold for ionizing radiation measurements — Part 7: Fundamentals and general applications. ISO/FDIS11929-7.
- Environment Agency and Scottish Environment Protection Agency. Radiological Monitoring Technical Guidance Note 1: Standardised Reporting of Radioactive Discharges for Nuclear Sites.
- ICRP (2006). Assessing Dose of the Representative Person for the Purpose of Radiation Protection of the Public and Optimisation of Radiological Protection: Broadening the Process. ICRP Publication 101. Ann ICRP, 36, No 3.

Table 1:

- 1. IAEA Safety Standards Series No. RS G-1.8. Environmental and Source Monitoring for Purposes of Radiation Protection. Safety Guide. IAEA, Vienna, 2005.
- 2. The Convention for the Protection of the Marine Environment of the North-East Atlantic, Ospar Convention, 1992
- 3. Treaty on Establishing the European Atomic Energy Commission, Euratom Treaty

Table 4:

- 1. Environment Agency Work Instruction Protocol for Groundwater Quality Sampling (ES006) AMS 275_04 ES006.
- 2. Guidance on the Monitoring of Landfill, Leachate Groundwater and Surface Water, RandD project HOCO_232.
- 3. ISO 5667 part 11 Water Quality Sampling Guidance on Sampling Ground Waters.
- 4. ISO 5667 part 18 Water Quality Sampling Guidance on Sampling Groundwater from contaminated sites.
- 5. Methodology for Monitoring and Sampling groundwater, NRA RandD note 126.

- 6. Technical Guidance Note (Monitoring) M5: Routine measurement of gamma air kerma rate in the environment. HMSO, 1995.
- 7. Daish S. R., Dale A. A., Dale C. J., May R. and Rowe J. E. (2005). The temporal variations of ⁷Be, ²¹⁰Pb and ²¹⁰Po in air in England. J Env Rad, 84, 457-467.
- Mudge, S.M., Assinder D.J. and Russell, A.T. Meso-scale variation of radionuclides in sediments and implications for sampling. RandD Technical Report (P3-093/TR) and Project Record (P3-0937/TR) (In Draft).
- Wood M. D., Copplestone D., Crook P. UK Soil and Herbage Pollutant Survey UKSHS Report 2 Chemical and Radiometric Sample Collection Methods. RandD Technical Report (P3-083) (In Draft)
- Copplestone D., Wood M. D., Tyler A., Crook P. UK Soil and Herbage Pollutant Survey UKSHS Report 4 Soil Property and Radiometric Analytical methods RandD Technical Report (P3-083) (In Draft).
- Mudge, S.M., Assinder D.J.and Russell A.T., 2001. Micro-scale variability in contaminants in surface sediments. RandD Technical Report (P3-057/TR) and Project Record (P3-057/TR) Environment Agency December 2001.
- 12. Radon in Water Sampling Program. EPA/EERF-Manual-78-1 (1978).
- Special Issue of Journal of Radiological Protection. Conference proceedings, "Managing Historic Hot Particle Liabilities in the Marine Environment2, Nairn, Scotland. August 30th-31st 2005 (In Preparation).

Table 5

1. HSE Guidance on Electrical Safety Guidance Note 107

Table 1 Generic monitoring objectives with guidance/criteria

Ref	Objective	Description and purpose of monitoring	Current/ future discharges	Historic discharges	Regulator	Operator	Guidance and criteria for setting objectives for an environmental radiological monitoring programme
	Assess total representative person (see definitions) dose	Regulators are responsible for ensuring that dose limits from authorised practices are not breached.	I	I	I	-	Objective required for monitoring programme at a site where the dose assessed to be >0.02 mSv y ⁻¹ for discharges at EASR limits from all authorised sources. Once adequate monitoring data become available, these may be used to assess dose and determine whether this objective is required. Objective should be assigned to monitoring of exposure pathways which contribute doses >0.001 mSv y ⁻¹ to the total dose.
	Assess dose as an operator's performance measure	To be able to determine whether BPM / BAT is being used to minimise the impact on the environment.	I	-	-	I	Assessing dose as a performance measure is only likely to be informative to an operator where the dose assessed is >0.02 mSv y-1 for discharges at EASR limits. Once adequate monitoring data become available, these may be used to assess dose and determine whether this objective is required. Objective should be assigned to monitoring of exposure pathways which contribute doses > 0.001 mSv y ⁻¹ to the total dose.
	Assess total impact on wildlife (e.g. dose)	Combines with Objective A to further address the site's impact, with specific effects on wildlife being assessed.	I	I	I	-	Objective required for monitoring programme at a site where the dose assessed to be >10 μ Gy h ⁻¹ (annual average) for discharges at EASR limits from all authorised sources. Once adequate monitoring data become available, these may be used to assess dose and determine whether this objective is required. Objective should be assigned to monitoring of exposure pathways which contribute doses >1 μ Gy h ⁻¹ (annual average) to the total dose.
		As with Objective B to be able to determine whether BPM / BAT is being used to minimise the impact on wildlife.	I	-	-	I	Assessing the impact on wildlife as a performance measure is only likely to be informative to an operator where the dose assessed is >10 μ Gy h ⁻¹ (annual average) for discharges at EASR limits. Once adequate monitoring data become available, these may be used to assess dose and determine whether this objective is required. Objective should be assigned to monitoring of exposure pathways which contribute doses >1 μ Gy h ⁻¹ (annual average) to the total dose.

Ref	Objective	Description and purpose of monitoring	Current/ future discharges	Historic discharges	Regulator	Operator	Guidance and criteria for setting objectives for an environmental radiological monitoring programme
	Provide public and stakeholder reassurance	Regulators to provide reassurance to the public	I	I	I	(I)	The need for this objective will be dependent upon on-going and emerging concerns. The extent to which the objective will be assigned to monitoring of different exposure pathways should be proportionate to the scale of the concerns and the potential impact. This objective should generally not be assigned to a particular exposure pathway where the dose is $\leq 0.001 \text{ mSv y}^{-1}$.
	Check / complimentary monitoring	Allows results comparison, designed to identify any sampling / monitoring / analytical problems and allow investigations to be instigated. Consistency of results	I	I	I	(I)	This objective will generally be required for each site which has a routine environmental radiological monitoring programme. Normally, elements of the regulator's programme provide a check on the operator's programme. The elements of the programme assigned as check monitoring should also be designed for the same objective as the main programme to ensure the results can be compared. Overall, check monitoring should provide about a 10% check on the main programme, taking account the number of locations and frequency of monitoring in the main programme.
G	Assess background (very far field)	Provides info on background conditions against which to assess impact of site operations.	(I)	I	I	-	This objective is generally satisfied by national monitoring programmes required by the European Commission. The objective should be assigned to monitoring locations which are beyond the range of the detectable impact of sources.

Ref	Objective	Description and purpose of monitoring	Current/ future discharges	Historic discharges	Regulator	Operator	Guidance and criteria for setting objectives for an environmental radiological monitoring programme
Н	Assess long term trends (Indicator)	Provide information on changes to the environment over time.	I	I	I	I	The need for this objective will depend upon the observed or potential rate of change of environmental concentrations, for example due to variable discharge profile (e.g. batch processes), half-life of radionuclide and dynamic environmental process. The objective should be assigned to monitoring parts of the environment which accumulate or integrate radionuclides (e.g. seaweed). Samples should be taken from the same locations for a meaningful temporal comparison of the results to be made [Ref 1]. If modelled/measured activity concentrations were close to background/limit of detection, monitoring for this objective would be unlikely to be warranted.
1	Comply with international obligations	To gather information to comply with international requirements (e.g. OSPAR, Euratom Articles 35/36).	I	I	I	I (not reported under Article 36)	Objectives assigned to monitoring programmes or elements of programmes which are required to comply with international agreements.
J	Detect abnormal, fugitive and unauthorised releases (Indicator)	To provide an early indication of an abnormal release. To pick up any unaccounted for releases – could be from fugitive emissions or from a process with an unexpected consequence.	I	-	-	I	Objective required where there is the potential for abnormal or fugitive releases. This objective should be assigned to elements of the monitoring programme which are sensitive to change and have a rapid response so that they can provide a means of early detection of such an abnormal release. Instrumentation to detect abnormal releases on for instance stacks may provide better early warning/information and preclude the need for this objective.

Ref	Objective	Description and purpose of monitoring		Historic discharges	Regulator	Operator	Guidance and criteria for setting objectives for an environmental radiological monitoring programme
к	Understand / monitor behaviour of radio-nuclides in the environment	Wide ranging objective looking at spatial distribution and temporal variations. Model verification could be considered if information gained could be back fitted and linked to models (e.g. retrospective dose assessment.	I	I	I	I	This objective is likely to be assigned to sites with the largest environmental impact to ensure that the main source – pathway – receptor routes have been identified and the scientific basis of the programme remains acceptable and any constraints on the data are understood. The objective should only be assigned to elements of the monitoring programme where there are detectable activity concentrations (i.e. greater than limit of detection). Sample types and locations will need to be selected to provide information on spatial distribution, extent of dispersion, re-concentration and changes in environmental behaviour of radionuclides. They will also need to be compatible with models to allow model verification.

Table 2 Sample types which can be used to meet objectives

Ref	Objectives	Sample/Monitoring type	
Α	Assess total	Dose Rate Monitoring (Terrestrial)	Milk and dairy products
	representative person	Dose Rate Monitoring (Inter-tidal/marine)	Meat and meat products
	dose	High Volume Air Sampling	Poultry, Eggs
		Water (Tap, surface, groundwater)	Fruit and Vegetables
		Grass (dose surrogate)	Wildlife/Game
		Landfill leachates	Fish – Marine and freshwater
		Sewage/sludges	Crustaceans and Molluscs – Marine and freshwater
		Sediment – Estuary/coastal freshwater	Freshwater weed
		Seaweed	
В	Assess dose as an	Dose Rate Monitoring (Terrestrial)	Milk and dairy products
	operator's performance	Dose Rate Monitoring (Inter-tidal/marine)	Meat and meat products
	measure	High Volume Air Sampling	Poultry, Eggs
		Water (Tap, surface, groundwater)	Fruit and Vegetables
		Grass (dose surrogate)	Wildlife/Game
		Landfill leachates	Fish – Marine and freshwater
		Sewage/sludges	Crustaceans and Molluscs – Marine and freshwater
		Sediment – Estuary/coastal freshwater	Freshwater weed
		Seaweed	
С	Assess total impact on	Dose Rate Monitoring (Terrestrial)	Wildlife/Game
	wildlife (dose)	Dose Rate Monitoring (Inter-tidal/marine)	Fish – Marine and freshwater
		Water (Tap, surface, groundwater)	Crustaceans and Molluscs – Marine and freshwater
		Soil	
		Sediment – Estuary/coastal freshwater	
		Seawater collected from shore	

Ref	Objectives	Sample/Monitoring type	
D	Assess impact on wildlife as an operator's performance measure (dose)	Dose Rate Monitoring (Inter-tidal/marine)	Wildlife/Game Fish – Marine and freshwater Crustaceans and Molluscs – Marine and freshwater
E	Provide public and stakeholder reassurance	Dose Rate Monitoring (Terrestrial) – also, workforce reassurance Dose Rate Monitoring (Inter-tidal/marine) Contamination monitoring (Inter-tidal/marine) High Volume Air Sampling Passive Shades Total Deposition Water (Tap, surface, groundwater) Soil Grass Landfill leachates – also workforce reassurance (landfill operative Sewage/sludges – also workforce reassurance (public STW work Sediment – Estuary/coastal freshwater Seawater collected from shore Seaweed	Meat and meat products Poultry, Eggs Fruit and Vegetables Wildlife/Game Fish – Marine and freshwater Crustaceans and Molluscs – Marine and freshwater Freshwater weed
F	Check/complementary monitoring	Dose Rate Monitoring (Terrestrial) Dose Rate Monitoring (Inter-tidal/marine) Contamination monitoring (Inter-tidal/marine) High Volume Air Sampling Total Deposition Water (Tap, surface, groundwater) Soil Grass Landfill leachates Sewage/sludges Sediment – Estuary/coastal freshwater	Milk and dairy products Meat and meat products Poultry, Eggs Fruit and Vegetables Cereal (Crops Wildlife/Game Fish – Marine and freshwater Crustaceans and Molluscs – Marine and freshwater Freshwater weed

Ref	Objectives	Sample/Monitoring type	
		Seawater collected from shore	
G	Assess background (very far field)	Dose Rate Monitoring (Terrestrial) Dose Rate Monitoring (Inter-tidal/marine) High Volume Air Sampling Total Deposition Water (Tap, surface, groundwater) Soil Grass Sewage/sludges Sediment – Estuary/coastal freshwater Seawater collected from shore	Milk and dairy products Meat and meat products Poultry, Eggs Fruit and Vegetables Cereal (Crops) Wildlife/Game Fish – Marine and freshwater Crustaceans and Molluscs – Marine and freshwater Freshwater weed
Η	Assess long term trends (Indicator)	Seaweed Dose Rate Monitoring (Terrestrial) Dose Rate Monitoring (Inter-tidal/marine) High Volume Air Sampling Passive shades Total Deposition Water (Tap, surface, groundwater) Soil Grass Landfill leachates Sewage/sludges Sediment – Estuary/coastal freshwater Seawater collected from shore Seaweed	Milk and dairy products Meat and meat products Poultry, Eggs Fruit and Vegetables Cereal (Crops) Fish – Marine and freshwater Crustaceans and Molluscs – Marine and freshwater Freshwater weed
I	Comply with international obligations	High Volume Air Sampling Total Deposition Water (Tap, surface, groundwater) Seawater collected from shore	Milk and dairy products Meat and meat products Fish – Marine and freshwater Crustaceans and Molluscs – Marine and freshwater
J	Detect abnormal, fugitive and unauthorised releases	Dose Rate Monitoring (Terrestrial) Dose Rate Monitoring (Inter-tidal/marine)	Milk and dairy products Fruit and Vegetables

Ref	Objectives	Sample/Monitoring type Contamination monitoring (Inter-tidai/marine)							
	(Indicator)		vviidiite/Game						
		High Volume Air Sampling	Crustaceans and Molluscs – Marine and freshwater						
		Passive Shades	Freshwater weed						
		Total Deposition							
		Water (Tap, surface, groundwater)							
		Grass							
		Landfill leachates							
		Sewage/sludges – for operators being done as part of clearance regulators may do for public STW	е,						
		Sediment – Estuary/coastal freshwater							
		Seawater collected from shore – scale from pipes							
		Seaweed							
Κ		Dose Rate Monitoring (Terrestrial) – also, workforce reassurance Milk and dairy products							
		Dose Rate Monitoring (Inter-tidal/marine)	Meat and meat products						
		Contamination monitoring (Inter-tidal/marine)	Fruit and Vegetables						
		High Volume Air Sampling	Wildlife/Game						
	Understand / monitor	Passive Shades	Fish – Marine and freshwater						
	behaviour of radio-	Total Deposition	Crustaceans and Molluscs – Marine and freshwater						
	nuclides in the	Water (Tap, surface, groundwater)	Freshwater weed						
	environment	Soil – only relevant for dynamic environments							
		Grass							
		Sewage/sludges							
		Sediment – Estuary/coastal freshwater							
		Seawater collected from shore							
		Seaweed							

Table 3 – Guidance on what to monitor, where and how often

This table indicates which programme is meeting an objective – i.e. regulator or operator through the use of prefixes R and O.

Where different samples/monitoring would be required to meet different objectives e.g. for the regulator programme, assess total representative person dose (Objective A) and assess background (Objective G) the components of the programme are indicated as R1 and R2.

Where the same samples/monitoring or a subset of these can be used to fulfil other objectives this is indicated by putting the objective code in brackets. For example for 3.4 in Table 3 "provide public and stakeholder reassurance" (Objective E) could be a sub-set of the "assess total representative person dose" hence for 3.4 of Table 3 against Objective E this is indicated as (R1). This does not indicate priority between the objectives, but is based on the objective for which the greatest number of samples is required.

For the assess background (very far field objective) (Objective G) if there is a national programme being undertaken there may be no need to take additional background samples for a particular site, hence the lower value of the range is zero.

Not all the sample/monitoring types in Table 3 will apply to every situation, for example sites with HVAS may not deploy passive shades and vice versa.

The "Differences for Historical Releases" column indicates whether a different sampling strategy would be required if historical discharges were being routinely monitored rather than current releases.

Sample/monitoring	Objectives		Data	Location	Frequency	Number range	Total no. of	Differences for
type			requirements			/year	samples/year	historical releases
3.1	Assess total	(R1)	µB/h ¹	1-4 At location of max	Continuous	1-4 continuous	Operator	No difference, also based
Dose Rate	representative		µB/h ¹	predicted dose and others			Continuous 5-22	on previous
Monitoring	person dose			determined from habit			Or 4 - 120 spot	monitoring/knowledge/
(Terrestrial)				surveys				habit surveys
				[Discharges and direct				
				radiation]			Regulator	
	Assess dose as an	01	µBh ¹	1-10 At location of max	Continuous and/or	1-10	Continuous 1–10	As above
	operator's		µ8kf	predicted dose and others	monthly- quarterly	continuous or	Or 4 - 120.2 spot	
	performance			determined from habit	spot measurement	4-120 spot		
	measure			surveys				
				[Discharges and direct				
				radiation]				

Sample/monitoring	Objectives		Data	Location	Frequency	Number range	Total no. of	Differences for
уре			requirements			/year	samples/year	historical releases
	Assess total	(R1)	µGyh⁻¹	1-4 Targeted to sensitive	Continuous	1-4 continuous		No difference
	impact on wildlife			habitats				
	(e.g. dose)							
	Assess impact on	(O1)	µGyh⁻¹	1-10 Targeted to sensitive	Continuous and/or	1-10		No difference
	wildlife as an			habitats	monthly -quarterly	continuous or		
	operator's				spot measurement	4-120 spot		
	performance							
	measure (e.g.							
	dose)							
	Provide public and	R1	μShł	1-10 Targeting large	Continuous and/or	1-10		No difference
	stakeholder		µB/h ¹	population centres - maybe	monthly- quarterly	continuous or		
	reassurance			more distant and/or max	spot measurement	4-120 spot		
				dose				
	Provide workforce	(01)	µ8/h ¹	1-4 around site perimeter	Continuous and/or	1-4 continuous		No difference
	reassurance		µ8h ¹	and/or max dose	monthly- quarterly	or 4-48 spot		
					spot measurement			
	Check/complement	• •	h&h	Max dose	Continuous and/or			No difference
	ary monitoring	(O1)	µBh ¹		quarterly -	1-4 spot		
					annually spot			
					measurement			
	Assess	R2	h&h	1-2 background locations or	10 years	0-2 per 10		No difference
	background (very		µ B h ¹	done as part of a national		years spot		
	far field)			programme e.g. 20-50km				
				survey grid				
	Assess long term	(R1)	µ8h ¹	Max dose	Continuous and/or	1 continuous or		No difference
	trends (indicator)	(O1)	µ8h ¹		annual spot	1 spot		
					measurement			

Sample/monitoring	Objectives		Data	Location	Frequency	Number range	Total no. of	Differences for
type			requirements			/year	samples/year	historical releases
	Detect abnormal,	02	µ8⊮ ¹	4-12 around site perimeter	Continuous –	4-12		NA
	fugitive and		µ8h ¹	(Less for coastal location)	instrument based	continuous		
	unauthorised			Covered by emergency				
	releases (Indicator)			arrangements				
	Understand/	(R1)	µ&h ¹	Max dose	Quarterly to	1-4 spot		No difference
	monitor behaviour	(01)	µB/h ¹		annually Spot	1 4 Spot		
	of radionuclides in	(01)			measurement			
	the environment				[Trigger to look at			
					other monitoring]			
3.2	Assess total	(R1)	µB/h ¹	1-4 At location of max	Spot measurement	4-48	<u>Operator</u>	No difference, also based
Dose Rate	representative		µ8h ¹	predicted dose and others	monthly – quarterly		4-120	on previous
Monitoring (Inter-	person dose			determined from habit	 continuous would 			monitoring/knowledge/
tidal/marine)				surveys/modelling	be good, but		Regulator	habit surveys
				[Discharges and direct	prevented by		4.1-242	
				radiation]	practicalities.			
	Assess dose as an	01	µ B h ¹	1-10 At location of max	Spot measurement	4-120		No difference
	operator's		µ B h ¹	predicted dose and others	monthly – quarterly			
	performance			determined from habit	 continuous would 			
	measure			surveys/modelling	be good, but			
				[Discharges and direct	prevented by			
				radiation]	practicalities.			
	Assess total	(R1)	µGyh⁻¹	1-4 Targeted to sensitive	Spot measurement	4-48		No difference
	impact on wildlife			wildlife	monthly – quarterly			
	(e.g. dose)				 continuous would 			
					be good, but			
					prevented by			
					practicalities.			

Sample/monitoring	Objectives		Data	Location	Frequency	Number range	Total no. of	Differences for
уре			requirements			/year	samples/year	historical releases
	Assess impact on	(O1)	µGyh⁻¹	1-10 Targeted to sensitive	Spot measurement			No difference
	wildlife as an			wildlife	monthly – quarterly			
	operator's				 continuous would 			
	performance				be good, but			
	measure (e.g.				prevented by			
	dose)				practicalities.			
	Provide public and	R1	µ8h ¹	1-20 Targeting non- critical	Spot measurement	4-240		No difference
	stakeholder		µ8h ¹	habits, further afield	monthly – quarterly			
	reassurance				 – continuous would 			
					be good, but			
					prevented by			
					practicalities.			
	Check/complement	(R1)	µ B h ¹	10% of locations (range of	Spot measurement	4-12		No difference
	ary monitoring	(O1)	µ B h¹	doses) i.e. 1-3	quarterly -			
					annually-			
					continuous would			
					be good, but			
					prevented by			
					practicalities.			
	Assess	R2	µ B h ¹	1-10 remote locations	5-10 yearly	1 per 10 years -		No difference
	background (very		µ8h ¹	(better achieved by		2		
	far field)			analysing natural				
				contributions at the site)				
	Assess long term	(R1)	µSvh⁻¹	1-3 locations, Max	Spot measurement	1-3		No difference
	(indicator)	(01)	µSvy⁻¹	dose, both directions from	annual –			
				site	continuous would			
					be good, but			
					prevented by			
					practicalities.			
	Understand/monito	(R1)	µ B h ¹	1-3 locations, Max	Spot measurement	1-12		No difference

Sample/monitoring	Objectives		Data	Location	Frequency	Number range	Total no. of	Differences for
type			requirements			/year	samples/year	historical releases
	behaviour of radionuclides in the environment	(01)	HBH HBH	dose, both directions from site	quarterly – annually [Trigger to look at other monitoring]			
3.3 Contamination monitoring (Inter- tidal/marine)	Provide public and stakeholder reassurance	R1	Cps Defined action level Conversion factor to dose	1-20 km of beach/inter-tidal areas (maybe broken into stretches), targeting occupied areas based on habit surveys and predicted concentrations	Quarterly – annually	1-80	Operator 4-72 <u>Regulator</u> 1-80	Targeting on known areas of contamination
	Check/complement ary monitoring	(R1) (O1)	Cps Defined action level Conversion factor to dose	10% of locations i.e. 1-2	Annually	1-2		As above
	Detect abnormal, fugitive and unauthorised releases (Indicator)	01	Cps Defined action level Conversion factor to dose	1-6 km of beach/inter- tidal areas (maybe broken into stretches). Close to pipeline to modelled area of maximum impact. Both directions from site	Monthly – Quarterly	4-72		NA
	Understand /monitor behaviour of radionuclides in the environment	(R1) (O1)	cps	1km of beach at areas of maximum contamination, both directions from site	Annually	2		Targeting maximum areas of known areas of contamination Suspect environmental processes causing change

Sample/monitoring	Objectives		Data	Location	Frequency	Number range	Total no. of	Differences for
type 3.4			requirements			/year	samples/year	historical releases
3.4	Assess total	R1	Bqm ⁻³	1-4 Population centres with	Continuous –	4-48	Operator	Prediction of air
High Volume Air	representative			highest predicted air	quarterly		4-48	concentration from source
Sampling	person dose			concentration - reflect wind-	campaigns,		48-144 limited	of contamination and re-
				rose	monthly filter		nuclides	suspension
					changes, monthly		Regulator	
					to quarterly		4-48	
					analysis batches		+ 1-120 part of	
	Assess dose as an	01	Bqm ⁻³	1-4 Population centres with	Continuous –	4-48	national	Prediction of air
	operator's			highest predicted air	quarterly		programme for	concentration from source
	performance			concentration - reflect wind-	campaigns,		background and	of contamination and re-
	measure			rose or1-4 around perimeter	monthly filter		international	suspension
					changes, monthly		obligations.	
					to quarterly			
					analysis batches			
	Provide public and	(R1)	Bqm ⁻³	1-4 Targeting large	Continuous –	4-48		No difference
	stakeholder			population centres – maybe	quarterly			
	reassurance			more distant and/or Max	campaigns,			
				concentration	monthly filter			
					changes, monthly			
					to quarterly			
					analysis batches			
	Check/complement	(R1) (Bqm ⁻³	Max air concentration	Quarterly	1 per 3 years -1		No difference
	ary monitoring	O1)			campaign,			
					Annually – 3 years			
	Assess	(R2)	Bqm ⁻³	1-2 remote locations or as	Continuous –	0-24		No difference
	background (very			part of a national	monthly filter			
	far field)			programme.	changes, monthly			
				Could be done on a	to annual bulks			
				campaign basis.	[Dependent on			
					conditions for			

Sample/monitoring	Objectives		Data	Location	Frequency	Number range	Total no. of	Differences for
type			requirements			/year	samples/year	historical releases
	Assess long term	(R1)	Bqm ⁻³	Max air concentration	Continuous –	1-12		No difference
	trends (indicator)	(O1)			monthly filter			Looking at resuspension
					changes, monthly			
					to annual bulks			
					[Dependent on			
					conditions for			
	Comply with	R2	Bqm⁻³	[Total of 1-10 remote	Continuous –	1-120		NA Check obligations
	international			locations in national	monthly filter			
	obligations			programme]	changes monthly			
					to annual bulks			
					[Dependent on			
					conditions for			
	Detect abnormal,	O2	Bqm ⁻³	4-12 around site perimeter	Continuous –	48-144		NA
	fugitive and		Bqkg ⁻¹	(Less for coastal location)	monthly filter			
	unauthorised				changes monthly			
	releases (Indicator)				bulks			
					[Dependent on			
					conditions for			
					change frequency]			
					Limited indicator			
					nuclides			
	Understand	(R1)	Bqm ⁻³	Max concentration	Continuous –	12		No difference
	/monitor behaviour	(O1)			monthly filter			
	of radionuclides in				changes monthly			
	the environment				bulks			
3.5	Provide public and	R1	Bq/shade	1-4 Targeting large	Continuous	2-96	Operator	Target on source of
Passive Shades	stakeholder			population centres – maybe	sampling –		48-144	contamination - e.g. land
	reassurance			more distant	monthly to annual		Regulator	contamination, sea to land
				and/or Max concentration	analysis (could		2-96	transfer, re-suspension
				and 1-4 around site	have more			
				perimeter	frequent sample			
					change)			

Sample/monitoring	Objectives		Data	Location	Frequency	Number range	Total no. of	Differences for
type			requirements			/year	samples/year	historical releases
	Assess long term	(R1)	Bq/shade	At point of max	Continuous	4-12		No differences
	trends (indicator)	(O1)		concentration	sampling quarterly			
					- annually analysis			
	Detect abnormal,	01	Bq/shade	4-12 around site perimeter	Continuous	48-144		NA
	fugitive and			(Less for coastal location)	sampling –			
	unauthorised				monthly analysis			
	releases (Indicator)							
	Understand/monito	(R1)	Bq/shade	At point of max	Continuous	1-4		No differences
	r behaviour of	(O1)		concentration	sampling –			
	radionuclides in				quarterly - annually	,		
	the environment				analysis			
3.6	Provide public and	R1	Bql ⁻¹	1-4 Population centres with	Continuous	4-48	Operator	Target on source of
Total Deposition	stakeholder		Bqm ⁻²	highest predicted	collection		1-8	contamination - eg land
	reassurance		Bqm ⁻³	deposition - reflect wind-	monthly to		48-144 limited	contamination, sea to land
				rose (could be on	quarterly bulks		nuclides	transfer,
				,	Annual analysis on		Regulator	re-suspension
					some		4-48	
					radionuclides		+ 1-120 part of	
	Check/complement	01	Bql ⁻¹	1-2 locations including point	Continuous	1-8	national	No difference
		(R1)	Bqm ⁻²	of maximum deposition	collection		programme for	
	5	. ,	Bqm ⁻³		Quarterly to annual		background and	
			_ q		bulks		international	
	Assess	(R2)	Bql ⁻¹	1-2 remote locations or	Continuous	0-8	obligations.	No difference
	background (very		Bqm ⁻²	done as part of a national	collection			
	far field)		Bqm ⁻³	•	Quarterly to annual			
	,			1 3 4	bulks			
	Assess long term	(R1)	Bql ⁻¹	Point of maximum	Continuous	1-4		No difference
	trends (indicator)	(01)	Bqm ⁻²	deposition	collection			
	. ,	. ,	Bqm ⁻³	•	Quarterly to annual			
			1		bulks			

Sample/monitoring	Objectives		Data	Location	Frequency	Number range	Total no. of	Differences for
type			requirements			/year	samples/year	historical releases
	Comply with	R2	Bql⁻¹	[Total of 1-10 remote	Continuous	1-120		NA
	international		Bqm ⁻²	locations in national	collection			
	obligations		Bqm⁻³	programme]	Monthly to annual			
					bulks			
	Detect abnormal,	02	Bql ⁻¹	4-12 around site perimeter	Continuous	48-144 limited		NA
	fugitive and		Bqm ⁻²	(Less for coastal	collection monthly	nuclides		
	unauthorised		Bqm ⁻³	location)	bulks Limited			
	releases (Indicator)				indicator nuclides			
	Understand	(R1)	BqI⁻¹	Point of maximum	Continuous	1-4		No difference
	/monitor behaviour	(O1)	Bqm ⁻²	deposition	collection			
	of radionuclides in		Bqm ⁻³		Quarterly to annual			
	the environment				bulks			
3.7	Assess total	R1	Bql ⁻¹	1-4 Sources of drinking	Quarterly to	1-16	Operator	Could be many more
Water (Tap, surface,	representative		Bqm ⁻³	water for major populations	annually		2-20	borehole locations for
groundwater)	person dose			(e.g. taps, reservoirs, rivers,	Depending on		4-120 limited	groundwater monitoring of
				groundwater) plus local	source		nuclides	a known contaminated
				water supplies (well,	Composite bulk for		Regulator	plume. Take account of
				runoff/rainwater, boreholes),	higher doses		2-20	location of source of
				based on habit surveys.			+ 80-240 part of	contamination
				Also sources for			national	
				irrigation/cattle drinking			programme for	
				water			background and	
	Assess dose as an	01	Bql ⁻¹	1-4 Sources of drinking	Quarterly to	1-16	international	As above
	operator's		Bqm ⁻³	water for major populations	annually		obligations.	
	performance			(e.g. taps, reservoirs, rivers,	Depending on			
	measure			groundwater) plus local	source			
				water supplies (well,	Composite bulk for			
				runoff/rainwater, boreholes),	higher doses.			
				based on habit surveys.	-			
				Also sources for				
				irrigation/cattle drinking				
				water				

Sample/monitoring	Objectives		Data	Location	Frequency	Number range	Total no. of	Differences for
type			requirements			/year	samples/year	historical releases
	Assess total	R2	Bql⁻¹	Water courses with	Quarterly to	1-4 per		No difference
	impact on wildlife		Bqm ⁻³	sensitive wildlife/ecosystem	annually	ecosystem		
	(e.g. dose)				Depending on			
					source			
					Composite bulk for			
					higher doses			
	Assess impact on	02	Bql ⁻¹	Water courses with	Quarterly to	1-4 per		No difference
	wildlife as an		Bqm ⁻³	sensitive wildlife/ecosystem	annually	ecosystem		
	operator's				Depending on	-		
	performance				source			
	measure (e.g.				Composite bulk for			
	dose)				higher doses			
			D 11			4.40		
	Provide public and	(R1)	Bql ⁻¹	1-10 Sources of drinking	Annually	1-10		Could be many more
	stakeholder		Bqm ⁻³	water for major populations				borehole locations for
	reassurance			(e.g. taps, reservoirs, rivers,				groundwater monitoring of
				groundwater) plus local	Composite bulk for			a known contaminated
				water supplies (well,	higher doses			plume. Take account of
				runoff/rainwater, boreholes),	,			location of source of
				based on habit surveys.				contamination
				Also sources for				
				irrigation/cattle drinking				
	<u>Chael/aemplament</u>	(D4)	Dal-1	water	A non-veller - O vegeter	1		No difference
	Check/complement		Bql ⁻¹	10 % check i.e. 1 location	Annually – 3 yearly	1 per 3 years -		No difference
	ary monitoring Assess	(O1) (R3)	Bqm ⁻³ Bql ⁻¹	1- 10 remote locations.	Annually	1-10		No difference
		(K3)	•		,			No difference
	background (very		Bqm ⁻³		Establish and keep			
	far field)			and water course type)	check on less			
					frequently			
	Assess long term	(R1)	Bql⁻¹	1 each of water types based	Annual	1 per water		No difference
	trends (indicator)	(O1)	Bqm⁻³	on habit surveys.	(rivers maybe	course, rivers		
					more frequent)	more often		

Sample/monitoring	Objectives		Data	Location	Frequency	Number range	Total no. of	Differences for
type			requirements			/year	samples/year	historical releases
	Comply with	R3	Bql ⁻¹	20 – 60 remote locations for	Quarterly	80-240		NA
	international		Bqm ⁻³	whole UK. (reflect geology				
	obligations			and water course type)				
				Based on				
				catchments/populations				
	Detect abnormal,	O3	Bql ⁻¹	1-10 downstream based on	Monthly-quarterly	4-120 limited		NA
	fugitive and		Bqm ⁻³	site hydrology. Due to	Depending on flow	nuclides		
	unauthorised			dilution not a good indicator,	rate			
	releases (Indicator)			except for ground water	Limited			
				boreholes	radionuclides			
	Understand/monito	(R1)	Bql ⁻¹	1 each of water types based	Annual	1 per water		Could be many more
	r behaviour of	(O1)	Bqm ⁻³	on habit surveys.	(rivers maybe	course, rivers		borehole locations for
	radionuclides in				more frequent)	more often		groundwater monitoring of
	the environment							a known contaminated
								plume. Take account of
								location of source
								of contamination
3.8	Assess total	R1	Bql⁻¹		Monthly – quarterly	4-48	Operator	Based on habit surveys of
Milk and dairy	representative			reflecting modelled	analysis –		4-48	where cows grazing
products	person dose			concentrations and wind-	sampling could be		6-24 limited	contaminated land e.g.
				rose.	weekly		nuclides	sea to land transfer, sea-
					[Nuclide		Regulator	washed pastures.
					dependent i.e. 131		5-88	
					may be required		+ 420 as part of	
					more frequently]		national	
					Needs to be all		programme for	
					year round to take		background and	
					account of silage		international	
					consumption		obligations.	
					during winter.			

Sample/monitoring	Objectives		Data	Location	Frequency	Number range	Total no. of	Differences for
type			requirements			/year	samples/year	historical releases
	Assess dose as an operator's performance	01	Bql⁻¹	1-4 local milk producers reflecting modelled concentrations and wind-	Monthly – quarterly [Nuclide dependent i.e. ¹³¹ I	4-48		As above
	measure			rose.	may be required more frequently] Needs to be all year round to take account of silage consumption during winter			
	Provide public and stakeholder reassurance	R2	Bql ⁻¹	1-10 local producers from habit surveys e.g. local dairies, markets, producers from habit surveys and more distant farms (5- 10km)	Quarterly – annual spot or bulk	1-40		As above
	Check /complementary monitoring	(R1) (O1)	Bql⁻¹	10% check i.e. 1 location	Monthly-Annually	1-12		No difference
	Assess background (very far field)	(R3)	Bql ⁻¹	1-2 remote milk producers or done as part of a national programme e.g. – supermarket milk		0-8		No difference
	Assess long term trends (indicator)	(R1) (O1)	Bql ⁻¹	1-2 milk producers based on wind-rose (difficult to achieve with changes in farming practices)	Annual	1-2		Based on max from knowledge, habit surveys
	Comply with international obligations	R3	Bql ⁻¹	Up to 35 locations for Great Britain	Weekly sampling. Monthly to annual bulks for analysis	Up to 420		NA

Sample/monitoring	Objectives		Data	Location	Frequency	Number range	Total no. of	Differences for
type			requirements			/year	samples/year	historical releases
	Detect abnormal,	02	Bql ⁻¹	1-4 local milk producers	Monthly whilst	6-24 limited		NA
	fugitive and			reflecting modelled	cows grazing in	nuclides (based		
	unauthorised			concentrations and wind-	field [Limited	on 6 months		
	releases (Indicator)			rose.	nuclides]	grazing)		
	Understand	(R1)	Bql ⁻¹	1 -2 milk producers based	Annual	1-2		Based on max from
	/monitor behaviour	(O1)		on wind-rose (difficult to				knowledge, habit surveys
	of radionuclides in			achieve with changes in				
	the environment			farming practices)				
3.9	Assess total	R1	Bq kg ⁻¹ wet	0-4 local producers and	Quarterly –	0-16	<u>Operator</u>	Based on habit surveys of
Meat and meat	representative			food types reflecting	annually		0-16	where animals grazing
products	person dose			modelled concentrations			Regulator	contaminated land e.g.
				and wind-rose.			0-32	sea to land transfer, sea-
							Or included in up	washed pastures.
	A 1	01				0.40	to 5 as part of	
	Assess dose as an	01	Bq kg ⁻¹ wet	0-4 local producers and	Quarterly –	0-16	national	As above
	operator's			food types reflecting	annually		programme for	
	performance			modelled concentrations			background	
	measure			and wind-rose.			_	
	Provide public and	R2	Bq kg⁻¹ wet	0-4 local producers and food	Quarterly – annual	0-16		As above
	stakeholder			types from habit surveys e.g.				
	reassurance			local farm shops producers				
				from habit surveys and more				
				distant farms (5-10km)				
	Check	(R1)	Bq kg⁻¹ wet	0-2 local producers and	Annually	0-2		No difference
	/complementary	(O1)		food types				
	monitoring			10% check				
	Assess	R3	Bq kg⁻¹ wet	0-2 remote meat producers	Annual	0-2		No difference
	background (very			and food types or done as				
	far field)			part of a national				
				programme e.g. from farms				
				or markets or indirectly				
				through mixed diet				
				programme.				

Sample/monitoring	Objectives		Data	Location	Frequency	Number range	Total no. of	Differences for
type			requirements			/year	samples/year	historical releases
	Assess long term	(R1)	Bq kg ⁻¹ wet	0-1 meat producer and food	Annual	0-1		Based on max from
	trends (indicator)	(O1)		type based on wind-rose				knowledge, habit surveys
				(difficult to achieve with				
				changes in farming				
	Understand	(R1)	Bq kg⁻¹ wet	0-1 meat producer and food	Annual	0-1		Based on max from
	/monitor behaviour	(O1)		type based on wind-rose				knowledge, habit surveys
	of radionuclides in			(difficult to achieve with				
	the			changes in farming				
3.10	Assess total	R1	Bq kg ⁻¹ wet	1-4 local producers and	Quarterly –	1-16	Operator	Based on habit surveys of
Poultry, Eggs	representative			food types reflecting	annually		1-16	where poultry scavenging
	person dose			modelled concentrations			Regulator	on contaminated land e.g.
				and wind-rose.			2-32	sea to land transfer, sea-
							2+ as part of a	washed pastures.
							national	
							programme for	
	Assess dose as an	01	Bq kg ⁻¹ wet	1-4 local producers and	Quarterly –	1-16	backgrounds	As above
	operator's			food types reflecting	annually			
	performance			modelled concentrations				
	measure			and wind-rose.				
	Provide public and	R2	Bq kg⁻¹ wet	1-4 local producers and food	Quarterly – annual	1-16		As above
	stakeholder			types from habit surveys e.g.				
	reassurance			local farm shops producers				
				from habit surveys and more				
				distant farms (5-10km)				
	Check/complement		Bq kg ⁻¹ wet	1-2 local producers and	Annually	1-2		No difference
	ary monitoring	(O1)		food types				
		D0	Pa ke-1 wet	10% check	Appually	0-2		No difference
	Assess	R3	Bq kg⁻¹ wet	1-2 remote producers and	Annually	0-2		no amerence
	background (very			food types or done as part				
	far field)			of a national programme				
				e.g. – supermarket				

Sample/monitoring	Objectives		Data	Location	Frequency	Number range	Total no. of	Differences for
type			requirements			/year	samples/year	historical releases
	Assess long term	(R1)	Bq kg ⁻¹ wet	1 local producer and food	Annual	1		Based on max from
	trends (indicator)	(O1)		type based on wind-rose				knowledge, habit surveys
				(difficult to achieve with				
				changes in farming				
3.11	Assess total	(R1)	Bq kg ⁻¹ wet	1-4 local producers and	Annual at point of	1-4	<u>Operator</u>	No difference
Fruit and Vegetables	representative			food types (root veg, green	harvest		1-4	
	person dose			veg, fruit, free foods) based			Regulator	
				on habit surveys and max			1-14	
				deposition			+ ~50 as part of	
	Assess dose as an	01	Bq kg ⁻¹ wet	1-4 local producers and	Annual at point of	1-4	national	No difference
	operator's			food types (root veg, green	harvest		programme for	
	performance			veg, fruit, free foods) based			background	
	measure			on habit surveys and max				
				deposition				
	Provide public and	R1	Bq kg⁻¹ wet	1-10 local producers and food	Annual at point of	1-10		No difference Free foods
	stakeholder			types (root veg, green veg,	harvest			
	reassurance			fruit, free foods) based on				
				habit surveys and max				
				deposition				
	Check/complement	(R1)	Bq kg⁻¹ wet	1-2 local producers and	Annual – 3 yearly	1 per 3 years -		No difference
	ary monitoring	(O1)		food types		2		
	-		1	10% check				
	Assess	R2	Bq kg ⁻¹ wet	1-4 local producers and	Annual – 3 yearly	0 -4		No difference
	background (very			food types (root veg, green				
	far field)			veg, fruit, free foods) or				
				done as part of a national				
				programme				
	Assess long term	(R1)	Bq kg ⁻¹ wet		Annually at point of	1-4		No difference
	trends (indicator)	(O1)		food types (root veg, green	harvest			
				veg, fruit, free foods) Max				
				concentration				

Sample/monitoring	Objectives		Data	Location	Frequency	Number range	Total no. of	Differences for
type			requirements			/year	samples/year	historical releases
	Understand/	(R1)	Bq kg⁻¹ wet	1-4 local producers and	Annually at point of	1-4		No difference
	monitor behaviour	(O1)		food types (root veg, green	harvest			
	of radionuclides in			veg, fruit, free foods) Max				
	the food/			concentration				
3.12	Check/complement	(R1)	Bq kg ⁻¹ wet?	1-2 local producers and	Annual – 3 yearly	1 per 3 years -	<u>Operator</u>	No difference
Cereal (Crops)	ary monitoring	01		food types		2	0-2	
				10% check			Regulator	
	Assess	R2	Bq kg ⁻¹ wet?	1-2 remote producers and	Annual – 3 yearly	0 -2	1-2	No difference
	background (very			food types or done as part				
	far field)			of a national programme				
				e.g. from farms or markets.				
	Assess long term	R1	Bq kg ⁻¹ wet?	1 producer and crop	Annually at point of	1	-	No difference
	trends (indicator)			(highest concentration)	harvest			
8.13	Assess total	R1	Bq kg⁻¹ dry	1-5 targeted to sensitive	Annually	1-5	<u>Operator</u>	No difference
Soil	impact on wildlife		Wet /dry ratio	wildlife habitats and max			1-5	
	(e.g. dose)			concentrations			Regulator	
	Assess impact on	01	Bq kg⁻¹ dry	1-5 targeted to sensitive	Annually	1-5	1-5	No difference
	wildlife as an		Wet /dry ratio	wildlife habitats and max			+ 150 part of	
	operator's			concentrations			national	
	performance						programme for	
	measure (e.g.						background	
	dose)						every 10 years	
	Provide public and	(R1)	Bq kg ⁻¹ dry	1-5 targeted at population	Annually – 3 yearly	1 per 3 years -	F	No difference
	stakeholder		Wet /dry ratio	centres and/or maximum		5		
	reassurance			concentration				
	Check	(R1) (Bq kg⁻¹ dry	At point of max	Annually – 3 yearly	1 per 3 years -	-	No difference
	/complementary	O1)	Wet /dry ratio	concentration		1		
	monitoring							

Sample/monitoring	Objectives		Data	Location	Frequency	Number range	Total no. of	Differences for
type			requirements			/year	samples/year	historical releases
	Assess	(R2)	Bq kg ⁻¹ dry Bq m ⁻	1-2 remote locations or	3 yearly – 10	0 – 2 per 3		No difference
	background (very		² dry	done as part of national	Yearly	years		
	far field)		Wet /dry ratio	programme (e.g. on 50km				
				grid across UK ~150				
				samples every 10 years)				
	Assess long term	(R1)	Bq kg ⁻¹ dry	1-2 Fixed locations -Max	Annually	1-2		No difference
	trends (indicator)	(O1)	Bq m ⁻² dry	concentration, prevailing				
			Wet /dry ratio	wind direction				
	Understand	(R1)	Bq kg ⁻¹ dry	1 location - Max	Annually	1		No difference
	/monitor behaviour	(O1)	Bq m ⁻² dry	concentration.				
	of radionuclides in		Wet /dry ratio					
	the environment							
3.14	Dose surrogate	(R1)	Bq kg ⁻¹ wet	In vicinity of where	Monthly to	2-8	Operator	Targeted to known areas
Grass ¹		(O1)	Wet/dry ratio	surrogate food type would	Quarterly (during		2-12	of contamination
				have come from e.g. milk,	growing season –		4-60 after incident	Different radionuclides
				veg Or max concentration	assumed 8		Regulator	Seasonal targeting
					months)		2-20	
							+ 150 part of	
							national	
	Provide public and	R1	Bq kg ⁻¹ wet	1-5 targeted at population	Quarterly to annual	1-20	programme for	As above
	stakeholder		Wet/dry ratio	centres and/or maximum			background	
	reassurance			concentration Or emergent			every 10 years	
				issue				

¹ When analysing grass for ¹⁴C should also include a measurement to determine Bq kg⁻¹ carbon

Sample/monitoring	Objectives		Data	Location	Frequency	Number range	Total no. of	Differences for
type			requirements			/year	samples/year	historical releases
	Check	(R1)	Bq kg ⁻¹ wet	At point of max deposition	Annually – 3 yearly	1 per 3 years -1		Area of highest
	/complementary	(O1)	Wet/dry ratio					contamination
	monitoring							
		(R2)	Bq kg ⁻¹ wet	1-2	Annual – 10 Yearly	0 -2		No additional
	background (very		Wet/dry ratio	Or done as part of national				requirements
	far field)		Bq m-2	programme (e.g. on 50km				
				grid across UK ~150				
				samples every 10 years)				
	Assess long term	(R1)	Bq kg⁻¹ wet		Quarterly to annual	1-12		Area of highest
	trends (indicator)	01	Wet/dry ratio	Fixed locations -Max				contamination
			Bq m ⁻²	concentration, prevailing				Annually – 10 years
				wind directions				
	Detect abnormal,	02	Bq kg ⁻¹ wet	1-5	Monthly to	4-60		NA
	fugitive and		Wet/dry ratio	(e.g. max concentration)	Quarterly			
	unauthorised		Bq m ⁻²		After incident spot			
	releases (Indicator)				samples.			
	Understand/	(R1)	Bq kg ⁻¹ wet	1 location - Max	Annually	1		Covered by investigation
	monitor behaviour		Wet/dry ratio	concentration.	, an ideally			
	of radionuclides in	(0.)	Bq m-2					
	the environment		292					

Sample/monitoring	Objectives		Data	Location	Frequency	Number range	Total no. of	Differences for
type			requirements			/year	samples/year	historical releases
3.15	Assess total	R1	Bq kg ⁻¹ wet	1-2 edible species, indicator	Quarterly-annually		Operator	No difference, where the
Freshwater weed	representative			of edible species or part of			1-8	areas of contamination
	person dose			food- chain based on habit			4-48 limited	are.
				surveys, maximum			nuclides	
				concentrations and			Regulator	
				availability of species			1-10	
	Assess dose as an	01	Bq kg ⁻¹ wet	1-2 edible species, indicator	Quarterly-annually	1-8		As above
	operator's		-	of edible species or part of				
	performance			food- chain based on habit				
	measure			surveys, maximum				
				concentrations and				
				availability of species				
	Provide public and	(R1)	Bq kg ⁻¹ wet	1-4 edible species, indicator	Annual	1-4		No difference
	stakeholder		-	of edible species or part of	Targeted against			
	reassurance			food- chain based on habit	life cycle of weed			
				surveys and local concern				
	Check	(R1)	Bq kg ⁻¹ wet	1-2 species and locations	Annual – 3 yearly	1 per 3 years -		No difference
	/complementary	(O1)		where sampled in main	Targeted against	2		
	monitoring			programme	life cycle of weed			
	Assess	R2	Bq kg ⁻¹ wet	1-2 remote locations	Annual - 3 yearly	0-2		No difference
	background (very				Targeted against			
	far field)				life cycle of weed			
	Assess long term	(R1)	Bq kg ⁻¹ wet	1-2 for fixed location /	Annually	1-2		Unlikely to be best
	trends (indicator)	(O1)		species				indicator for long term
								historic contamination
								concerns
	Detect abnormal,	O2	Bq kg ⁻¹ wet	1-4 cover different species	Monthly-quarterly	4-48		NA
	fugitive and		-		Limited nuclides			
	unauthorised							
	releases (Indicator)							
I				l				

Sample/monitoring	Objectives		Data	Location	Frequency	Number range	Total no. of	Differences for
type			requirements			/year	samples/year	historical releases
	Understand /monitor behaviour of radionuclides in the environment	(R1) (O1)	Bq kg⁻¹ wet	1-2 cover different species	Annually	1-2		No difference
3.16 Wildlife/Game	Assess total representative person dose	R1	Bq kg ⁻¹ wet	0-4 local food types reflecting maximum concentrations and habit surveys	Annually	0-4	Operator 0-8 0-24 limited nuclides <u>Regulator</u> 0-10	Based on habit surveys of where animals grazing contaminated land e.g. sea to land transfer, sea- washed pastures.
	Assess dose as an operator's performance measure	01	Bq kg ⁻¹ wet	0-4 local food types reflecting maximum concentrations and habit surveys	Annually	0-4		As above
	Assess total impact on wildlife (e.g. dose)	R2	Bq kg ⁻¹ wet	0-4 species reflecting maximum concentrations – advanticious finds	Annually (as available)	0-4		As above
	Assess impact on wildlife as an operator's performance measure (e.g. dose)	02	Bq kg ⁻¹ wet	0-4 species reflecting maximum concentrations – advanticious finds	Annually (as available)	0-4		As above
	Provide public and stakeholder reassurance	(R1)	Bq kg⁻¹ wet	0-4 local food types from habit surveys e.g. local farm shops, butchers	Annually	0-4		As above

50

Sample/monitoring	Objectives		Data	Location	Frequency	Number range	Total no. of	Differences for
type			requirements			/year	samples/year	historical releases
	Check/complement	(R1)	Bq kg ⁻¹ wet	0-2 local food types 10%	Annually – 3 yearly	0-2		No difference
	ary monitoring	(O1)		check				
	Assess	R3	Bq kg⁻¹ wet	0-2 remotely sourced food	Annually – 3 yearly	0 -2		No difference
	background (very			types or done as part of a				
	far field)			national programme				
	Detect abnormal,	O3	Bq kg⁻¹ wet	0-2 species found on/close	Monthly -Quarterly	0-24		NA
	fugitive and			to site - advanticious finds	(as available)			
	unauthorised				Limited indicator			
	releases (Indicator)				radionuclides			
	Understand	(R1)	Bq kg ⁻¹ wet	0- 1 local food type	Annual	0-1		Based on max from
	/monitor behaviour	(O1)		reflecting maximum				knowledge, habit surveys
	of radionuclides in			concentration				
	the							
	food/environment							
3.17 Landfill leachates	Assess total	R1	Bq _I -1 Bq _m -3	At central collection point	Quarterly – annually	1-4	<u>Operator</u> 1-4	No difference
	representative		1	prior to disposal e.g. to			4-48 limited	
	person dose			sewer/tanker			nuclides	
	Assess dose as an	01	Bq ⊦-1		Quarterly –	1-4	Regulator	No difference
	operator's		Bq _m -3	At central collection point	annually		1-4	
	performance			prior to disposal e.g. to				
	measure			sewer/tanker				
	Provide public and	(R1)	Bq ⊦-1	At central collection point	Quarterly –	1-4		No difference
	stakeholder		Bq m-3	prior to disposal e.g. to	annually			
	reassurance			sewer/tanker				
	(landfill operatives							
	considered here)							
	Check	(R1)	Bq ⊦-1	At central collection point	Annually	1		No difference
	/complementary	(O1)	Bq _m -3	prior to disposal e.g. to				
	monitoring			sewer/tanker				

Sample/monitoring	Objectives		Data	Location	Frequency	Number range	Total no. of	Differences for
type			requirements			/year	samples/year	historical releases
	Assess long term	(R1)	Bq⊣-1	At central collection point	Annually	1		No difference
	trends (indicator)	(O1)	Bq _m -3	prior to disposal e.g. to sewer/tanker				
	Detect abnormal,	O2	Bq⊣-1	1-4 leachates from affected	Monthly-quarterly	4-48		No difference
	fugitive and		Bq m-3	disposal cells and at central	Limited indicator			
	unauthorised			point of collection	radionuclide			
	releases (Indicator)							
3.18	Assess total	R1	Bq ⊦-1	3 sampling points (Raw	Quarterly –	4-28	Operator	NA
Sewage/sludges	representative		Bq kg ⁻¹	sewage entering works,	annually		4-28	
	person dose		Wet/dry ratio	treated effluent prior to	-		8-24 limited	
			Suspended	discharge and final sludge			nuclides	
			solids content	prior to disposal)			Regulator	
				Also 1-4 locations capturing			4.3-30	
				sludge and effluent				
				throughout process				
	Assess dose as an	01	Bq ⊦-1	3 sampling points (Raw	Quarterly –	4-28		NA
	operator's		Bq kg ⁻¹	sewage entering works,	annually			
	performance		Wet/dry ratio	treated effluent prior to	-			
	measure		Suspended	discharge and final sludge				
			solids content	prior to disposal)				
				Also 1-4 locations capturing				
				sludge and effluent				
				throughout process				
	Provide public and	(R1)	Bq ⊦-1	2 sampling points (Treated	Annually	2		NA
	stakeholder		Bq kg⁻¹	effluent prior to discharge				
	reassurance		Wet/dry ratio	and final sludge prior to				
			Suspended	disposal)				
			solids content					
	Provide workforce	(O1)	Bq⊣-1	1-4 locations capturing	Annually	1-4		NA
	reassurance		Bq kg⁻¹	sludge and effluent				
	(Public STW		Wet/dry ratio	throughout process				
	workers)		Suspended					
			solids content					

Sample/monitoring	Objectives		Data	Location	Frequency	Number range	Total no. of	Differences for
type		l	requirements			/year	samples/year	historical releases
	Check/complement	(R1)	Bq⊣-1	3 sampling points (Raw	Annually	3		NA
	ary monitoring	(O1)	Bq kg⁻¹	sewage entering works,				
			Wet/dry ratio	treated effluent prior to				
			Suspended	discharge and final sludge				
			solids content	prior to disposal)				
	Assess	R2	Bq⊣-1	1-2 remote sewage works 3	3 yearly - 10 yearly	3 per 10 years -		NA
	background (very		Bq kg⁻¹	sampling points (Raw		6 per 3 years		
	far field)		Wet/dry ratio	sewage entering works,				
			Suspended	treated effluent prior to				
			solids content	discharge and final sludge				
				prior to disposal)				
	Assess long term	(R1)	Bq⊣-1	3 sampling points (Raw	Annually	3		NA
	trends (indicator)	(O1)	Bq kg⁻¹	sewage entering works,				
			Wet/dry ratio	treated effluent prior to				
			Suspended	discharge and final sludge				
		 	solids content	prior to disposal)				
	Detect abnormal,	02	Bq ⊦-1		Monthly – quarterly	8-24		NA
	fugitive and		Bq kg⁻¹	sewage entering works and				
	unauthorised		Wet/dry ratio	final sludge prior to	radionuclides			
	releases (Indicator)		Suspended	disposal)				
	For operators		solids content					
	being done as part							
	Understand	(R1)	Bq⊣-1	2 sampling points (Treated	Quarterly –	2-8		NA
	/monitor behaviour	(O1)	Bq kg⁻¹	effluent prior to discharge	annually			
	of radionuclides in		Wet/dry ratio	and final sludge prior to				
	the environment		Suspended	disposal)				
		L	solids content					

Sample/monitoring	Objectives		Data	Location	Frequency	Number range		Differences for
уре			requirements			/year	samples/year	historical releases
3.19	Assess total	R1	Bq kg⁻¹	At least 1 round, 1 flatfish	quarterly –	2-8+	Operator	No difference
Fish – Marine and	representative		Wet/dry ratio	Landed at local ports.	annually		2-10+	
reshwater	person dose			Ideally caught within 20km			Regulator	
				radius of site			2-10+	
				Local suppliers			+ 4-16 part of	
				Farmed fish affected by			national	
				discharges			programme for	
				_			background and	
	Assess dose as an	01	Bq kg⁻¹	At least 1 round, 1 flat fish	quarterly –	2-8+	international	No difference
	operator's		Wet/dry ratio	Landed at local ports.	annually		obligation	
	performance			Ideally caught within 20km			obligation	
	measure			radius of site				
				Local suppliers				
				Farmed fish affected by				
				discharges				
	Assess total	(R1)	Bq kg ⁻¹	At least 1 pelagic, 1 benthic	Annually	2	-	No difference
	impact on wildlife		Wet/dry ratio	fish				
	(e.g. dose)		-	Landed at local ports.				
				Ideally caught within 20km				
				radius of site				
				Local suppliers				
				Farmed fish affected by				
				discharges				
	Assess impact on	(01)	Bq kg ⁻¹	At least 1 pelagic, 1 benthic	Annually	2	-	No difference
		(01)		fish	Annually	2		
	wildlife as an		Wet/dry ratio					
	operator's			Landed at local ports.				
	performance			Ideally caught within 20km				
	measure (e.g.			radius of site				
	dose)			Local suppliers				
				Farmed fish affected by				
				diacharran				

Sample/monitoring	Objectives		Data	Location	Frequency	Number range	Total no. of	Differences for
type			requirements			/year	samples/year	historical releases
3.19 cont. Fish – Marine and freshwater	Provide public and stakeholder reassurance	(R1)	Bq kg ⁻¹ Wet/dry ratio	At least 1 round, 1 flatfish Landed at local ports. Ideally caught within 20km radius of site Local suppliers Farmed fish affected by discharges	Annually	2		No difference
	Check/complement ary monitoring	(R1) (O1)	Bq kg ⁻¹ Wet/dry ratio	Either 1 round, 1 flat fish (alternate if poss) Landed at local ports. Ideally caught within 20km radius of site Local suppliers Farmed fish affected by discharges	Annually-3 yearly	1 per 3 years - 1		No difference
	Assess background (very far field)	(R2) Bq kg ⁻¹ At least 1 round, 1 flat fish Annually – 3 yearly 0 -2		No difference				
	Assess long term trends (indicator)	(R1) (O1)	Bq kg ⁻¹ Wet/dry ratio	At least 1 round, 1 flat fish Landed at local ports. Ideally caught within 20km radius of site Local suppliers Farmed fish affected by discharges	Annually	2		No difference
	Comply with international obligations	R2	Bq kg⁻¹ Wet/dry ratio	Nationally 4 locations range of fish types	Quarterly - Annually	4-16		NA

Sample/monitoring	Objectives		Data	Location	Frequency	Number range	Total no. of	Differences for
type			requirements			/year	samples/year	historical releases
	Understand/monito r behaviour of radionuclides in the environment	(R1) (O1)	Bq kg ⁻¹ Wet/dry ratio	At least 1 round, 1 flat fish Landed at local ports. Ideally caught within 20km radius of site Local suppliers Farmed fish affected by discharges	Quarterly-annually	2-8		No difference
3.20 Crustaceans and	Assess total representative	R1	Bq kg ⁻¹ Wet/dry ratio	1-4 crustaceans and molluscs (different species	Quarterly – annually	1-16	<u>Operator</u> 2-20	No difference
Molluscs – Marine and freshwater	person dose			where possible) at locations based on habit surveys and maximum concentrations (e.g. known harvesting beds, local suppliers)			4-24 limited nuclides <u>Regulator</u> 2-20 +9-36 part of national	
	Assess dose as an operator's performance measure	01	Bq kg ⁻¹ Wet/dry ratio	1-4 crustaceans and molluscs (different species where possible) at locations based on habit surveys and maximum concentrations (e.g. known harvesting beds, local suppliers)		1-16	programme for background and international obligation	No difference
	Assess total impact on wildlife (e.g. dose)	(R1)	Bq kg ⁻¹ Wet/dry ratio	1-4 crustaceans and molluscs (different species where possible) at locations based on maximum concentrations	Annually	1-4		No difference
	Assess impact on wildlife as an operator's performance measure (e.g.	(01)	Bq kg ⁻¹ Wet/dry ratio	1-4 crustaceans and molluscs (different species where possible) at locations based on maximum concentrations	Annually	1-4		No difference

Objectives		Data	Location	Frequency	Number range	Total no. of	Differences for
		requirements			/year	samples/year	historical releases
Provide public and	(R1)	Bq kg⁻¹	1-4 crustaceans and	Annually	1-4		No difference, except both
stakeholder		Wet/dry ratio	molluscs from locations				directions from discharge
reassurance			based on habit surveys,				point no
			max concentration and local				longer relevant.
			concern. Both directions				
Check/complement	(R1)	Bq kg⁻¹	1-2 crustaceans and	Annually – 3 yearly	1 per 3 years -		No difference
ary monitoring	(O1)	Wet/dry ratio	molluscs from same		2		
			locations as main				
			programme (rotate locations				
			around discharge point)				
Assess	(R2)	Bq kg⁻¹	1-2 crustaceans and molluscs	Annually -3 yearly	0 -2		No difference
background (very		Wet/dry ratio	remote from site. Or done as				
far field)			part of a national programme.				
Assess long term	(R1)	Bq kg ⁻¹	1-2 crustaceans and	Annually	1-2		No difference
trends (indicator)	(O1)	Wet/dry ratio	molluscs max concentration				
			both directions from				
			pipeline.				
Comply with	R2	Bq kg⁻¹	Nationally 9 locations range	Quarterly -	9-36		NA
international		Wet/dry ratio	of molluscs and	Annually			
obligations			crustaceans				
Detect abnormal,	O3	Bq kg⁻¹	1-2 crustaceans and	Monthly -Quarterly	4-24		NA
fugitive and		Wet/dry ratio	molluscs max concentration	Limited indicator			
unauthorised			both directions from	radionuclides			
releases (Indicator)			pipeline.				
Seaweed might be							
a better indicator							
Understand/monito	(R1)	Bq kg⁻¹	1-2 crustaceans and	Annually	1-2		No difference
r behaviour of	(01)	Wet/dry ratio	molluscs max concentration				
radionuclides in		-	both directions from				
the environment			pipeline.				
	stakeholder reassurance Check/complement ary monitoring Assess background (very far field) Assess long term trends (indicator) Comply with international obligations Detect abnormal, fugitive and unauthorised releases (Indicator) Seaweed might be a better indicator Understand/monito r behaviour of radionuclides in	reassurance(R1)Check/complement ary monitoring(R1)ary monitoring(O1)Assess background (very far field)(R2)Assess long term trends (indicator)(R1) (O1)Comply with international obligationsR2Detect abnormal, fugitive and unauthorised releases (Indicator)O3Detect abnormal, fugitive and unauthorised releases (Indicator)O3Understand/monito r behaviour of radionuclides in(R1) (O1)	Provide public and stakeholder reassurance(R1)Bq kg1 Wet/dry ratioCheck/complement ary monitoring(R1)Bq kg1 Wet/dry ratioCheck/complement ary monitoring(R1)Bq kg1 Wet/dry ratioAssess background (very far field)(R2)Bq kg1 Wet/dry ratioAssess long term trends (indicator)(R1)Bq kg1 Wet/dry ratioComply with 	Provide public and stakeholder reassurance(R1)Bq kg11-4 crustaceans and molluscs from locations based on habit surveys, max concentration and local concern. Both directionsCheck/complement ary monitoring(R1)Bq kg11-2 crustaceans and molluscs from same locations as main programme (rotate locations around discharge point)Assess background (very far field)(R2)Bq kg11-2 crustaceans and molluscs remote from site. Or done as part of a national programme.Assess long term trends (indicator)(R1)Bq kg11-2 crustaceans and molluscs from same locations as main programme (rotate locations around discharge point)Comply with international obligationsR2Bq kg11-2 crustaceans and molluscs max concentration both directions from pipeline.Detect abnormal, fugitive and unauthorised releases (Indicator)O3Bq kg11-2 crustaceans and molluscs max concentration both directions from pipeline.Understand/monito radionuclides in(R1)Bq kg11-2 crustaceans and molluscs max concentration both directions from pipeline.	Provide public and stakeholder reassurance (R1) Bq kg ⁻¹ Wet/dry ratio 1-4 crustaceans and molluscs from locations based on habit surveys, max concentration and local concern. Both directions Annually Check/complement ary monitoring (R1) Bq kg ⁻¹ 1-2 crustaceans and molluscs from same locations as main programme (rotate locations around discharge point) Annually – 3 yearly molluscs from same locations as main programme (rotate locations around discharge point) Assess (R2) Bq kg ⁻¹ 1-2 crustaceans and molluscs from site. Or done as part of a national programme. Assess long term far field) (R1) Bq kg ⁻¹ 1-2 crustaceans and molluscs max concentration both directions from pipeline. Annually -3 yearly motor a national programme. Comply with international obligations R2 Bq kg ⁻¹ 1-2 crustaceans and molluscs max concentration both directions from pipeline. Annually Detect abnormal, fugitive and unauthorised releases (Indicator) O3 Bq kg ⁻¹ 1-2 crustaceans and molluscs max concentration both directions from pipeline. Monthly -Quarterly Limited indicator Vet/dry ratio Bq kg ⁻¹ 1-2 crustaceans and molluscs max concentration both directions from Annually Understand/monito radionuclides in (R1) Bq kg ⁻¹ 1-2 crustaceans and molluscs max concentration both directions from Annually <td>Provide public and stakeholder reassurance (R1) Bq kg1 1-4 crustaceans and molluscs from locations based on habit surveys, max concentration and local concern. Both directions Annually 1-4 Check/complement ary monitoring (R1) Bq kg1 1-2 crustaceans and molluscs from same locations as main programme (rotate locations around discharge point) Annually – 3 yearly 1 per 3 years - 2 Assess (R2) Bq kg1 1-2 crustaceans and molluscs from same locations as main programme (rotate locations around discharge point) Annually – 3 yearly 0 -2 Assess long term far field) (R1) Bq kg1 1-2 crustaceans and molluscs around discharge point) Annually -3 yearly 0 -2 Comply with international obligations R2 Bq kg1 1-2 crustaceans and molluscs max concentration both directions from pipeline. Annually 1-2 Detect abnormal, fugitive and unauthorised releases (Indicator) O3 Bq kg1 1-2 crustaceans and molluscs max concentration both directions from pipeline. Monthly -Quarterly Limited indicator radionuclides 4-24 Understand/monito releases (Indicator) (R1) Bq kg1 1-2 crustaceans and molluscs max concentration both directions from pipeline. Annually 1-2 Understand/monito radionuclides in (R1) Bq kg1 1-2 crustaceans and m</td> <td>Provide public and stakeholder reassurance (R1) Bq kg⁻¹ Wet/dry ratio 1-4 crustaceans and molluscs from locations based on habit surveys, max concentration and local concern. Both directions Annually 1-4 Check/complement ary monitoring (R1) Bq kg⁻¹ 1-2 crustaceans and molluscs from same locations as main programme (rotate locations around discharge point) Annually – 3 yearly 1 per 3 years - 2 Assess (R2) Bq kg⁻¹ 1-2 crustaceans and molluscs from site. Or done as part of a national programme. Annually – 3 yearly 0 -2 Assess long term far field) (R1) Bq kg⁻¹ 1-2 crustaceans and molluscs max concentration both directions from pipeline. Annually 1-2 Comply with international obligations R2 Bq kg⁻¹ Nationally 9 locations range of molluscs max concentration both directions from pipeline. Quarterly - Annually 9-36 Detect abnormal, buigtive and unauthorised releases (Indicator) O3 Bq kg⁻¹ 1-2 crustaceans and molluscs max concentration both directions from pipeline. Monthly -Quarterly Annually 4-24 Understand/monito releases (Indicator) (R1) Bq kg⁻¹ 1-2 crustaceans and molluscs max concentration both directions from pipeline. Annually 1-2 Seawed might be a better indicator (R1) Bq kg⁻¹</td>	Provide public and stakeholder reassurance (R1) Bq kg1 1-4 crustaceans and molluscs from locations based on habit surveys, max concentration and local concern. Both directions Annually 1-4 Check/complement ary monitoring (R1) Bq kg1 1-2 crustaceans and molluscs from same locations as main programme (rotate locations around discharge point) Annually – 3 yearly 1 per 3 years - 2 Assess (R2) Bq kg1 1-2 crustaceans and molluscs from same locations as main programme (rotate locations around discharge point) Annually – 3 yearly 0 -2 Assess long term far field) (R1) Bq kg1 1-2 crustaceans and molluscs around discharge point) Annually -3 yearly 0 -2 Comply with international obligations R2 Bq kg1 1-2 crustaceans and molluscs max concentration both directions from pipeline. Annually 1-2 Detect abnormal, fugitive and unauthorised releases (Indicator) O3 Bq kg1 1-2 crustaceans and molluscs max concentration both directions from pipeline. Monthly -Quarterly Limited indicator radionuclides 4-24 Understand/monito releases (Indicator) (R1) Bq kg1 1-2 crustaceans and molluscs max concentration both directions from pipeline. Annually 1-2 Understand/monito radionuclides in (R1) Bq kg1 1-2 crustaceans and m	Provide public and stakeholder reassurance (R1) Bq kg ⁻¹ Wet/dry ratio 1-4 crustaceans and molluscs from locations based on habit surveys, max concentration and local concern. Both directions Annually 1-4 Check/complement ary monitoring (R1) Bq kg ⁻¹ 1-2 crustaceans and molluscs from same locations as main programme (rotate locations around discharge point) Annually – 3 yearly 1 per 3 years - 2 Assess (R2) Bq kg ⁻¹ 1-2 crustaceans and molluscs from site. Or done as part of a national programme. Annually – 3 yearly 0 -2 Assess long term far field) (R1) Bq kg ⁻¹ 1-2 crustaceans and molluscs max concentration both directions from pipeline. Annually 1-2 Comply with international obligations R2 Bq kg ⁻¹ Nationally 9 locations range of molluscs max concentration both directions from pipeline. Quarterly - Annually 9-36 Detect abnormal, buigtive and unauthorised releases (Indicator) O3 Bq kg ⁻¹ 1-2 crustaceans and molluscs max concentration both directions from pipeline. Monthly -Quarterly Annually 4-24 Understand/monito releases (Indicator) (R1) Bq kg ⁻¹ 1-2 crustaceans and molluscs max concentration both directions from pipeline. Annually 1-2 Seawed might be a better indicator (R1) Bq kg ⁻¹

Sample/monitoring	Objectives		Data	Location	Frequency	Number range	Total no. of	Differences for
type			requirements			/year	samples/year	historical releases
3.21 Sediment – Estuary/coastal	Assess total representative person dose	(R1)	Bq kg ⁻¹ dry Wet/dry ratio	1-4 locations based on habit surveys and maximum concentrations	Quarterly – Annually	1-16	<u>Operator</u> 1-40 4-72 limited	No difference
freshwater	Assess dose as an operator's performance measure	01	Bq kg ⁻¹ dry Wet/dry ratio	1-10 at locations based on habit surveys and maximum concentrations	Quarterly – Annually	1-40	nuclides <u>Regulator</u> 1-80	No difference
	Assess total impact on wildlife (e.g. dose)	(R1)	Bq kg ⁻¹ dry Wet/dry ratio	1-4 targeted to sensitive wildlife and max concentrations	Annually	1-4		No difference
	Assess impact on wildlife as an operator's performance measure (e.g. dose)	(O1)	Bq kg ⁻¹ dry Wet/dry ratio	1-10 targeted to sensitive wildlife and max concentrations	Annually	1-10		No difference
	Provide public and stakeholder reassurance	R1	Bq kg ⁻¹ dry Wet/dry ratio	1-20 Targeting non- critical habits further afield. Local concern.	Quarterly – annually	1-80		No difference
	Check/complement ary monitoring	(R1) (O1)	Bq kg ⁻¹ dry Wet/dry ratio	1-10 locations with range of concentrations	6 monthly – annually	1-20		No difference
-	Assess background (very far field)	R2	Bq kg ⁻¹ dry Wet/dry ratio	1-2 remote locations or done as part of a national programme	Annually – 3 yearly	0-2		No difference
	Assess long term trends (indicator)	(R1) (O1)	Bq kg ⁻¹ dry Wet/dry ratio	1-3 locations, Max concentration, both directions from site	Annually	1-3		No difference

Sample/monitoring	Objectives		Data	Location	Frequency	Number range	Total no. of	Differences for
ype			requirements			/year	samples/year	historical releases
	Detect abnormal,	02	Bq kg⁻¹ dry	1-6 locations	Monthly- Quarterly	4-72		NA
	fugitive and		Wet/dry ratio	Close to pipeline to	Limited indicator			
	unauthorised			modelled area of maximum	radionuclides			
	releases (Indicator)			impact. Both directions from				
	Understand	(R1)	Bq kg ⁻¹ dry	1-3 locations, Max	Annually	1-3	ľ	No difference
	/monitor behaviour	(O1)	Wet/dry ratio	concentration, both				
	of radionuclides in			directions from site				
	the environment							
3.22	Assess total	(R1)	Bq I ⁻¹ filtrate	1-2 based on maximum	Annually	1-2	Operator	No difference
Seawater collected	impact on wildlife		Bq kg⁻¹	concentrations and			1-2	
rom shore	(e.g. dose)		particulate	locations of sensitive wildlife			4-48 limited	
			Suspended				nuclides	
			solids content				Regulator	
			Bqm ⁻³				1-4	
	Assess impact on	01	Bq I ⁻¹ filtrate	1-2 based on maximum	Annually	1-2	+12-24 part of	No difference
	wildlife as an		Bq kg⁻¹	concentrations and			national	
	operator's		particulate	locations of sensitive wildlife			programme for	
	performance		Suspended				background and	
	measure (e.g.		solids content				international	
	dose)		Bqm⁻³				obligation	
	Provide public and	R1	Bq I ⁻¹ filtrate	1-4	Annually	1-4	-	No difference
	stakeholder		Bq kg⁻¹	Locations based on non-				
	reassurance		particulate	critical habits, local				
			Suspended	concerns, close to pipeline				
			solids content	and to modelled area of				
			Bqm⁻³	maximum impact. Both				
				directions from site				

Sample/monitoring	Objectives		Data	Location	Frequency	Number range	Total no. of	Differences for
type			requirements			/year	samples/year	historical releases
	Check	(R1)	Bq I ⁻¹ filtrate	1 - maximum concentration	Annually	1		No difference
	/complementary	(O1)	Bq kg⁻¹					
	monitoring		particulate					
			Suspended					
			solids content					
			Bam ⁻³					
	Assess	(R2)	Bq I ⁻¹ filtrate	1-2 remote locations or	3 yearly – 10	0-2 per 3 years		No difference
	background (very		Bq kg⁻¹	done as part of a national	yearly			
	far field)		particulate	programme				
			Suspended					
			solids content					
			Bam ⁻³					
	Assess long term		Bq I ⁻¹ filtrate	1 - maximum concentration	Annually	1		No difference
	trends (indicator)	(01)	Bq kg⁻¹					
			particulate					
			Suspended					
			solids content					
			Bam ⁻³					
	Comply with	R2	Bq I ⁻¹ filtrate	1-2 in whole UK as part of	Monthly – check	12-24		NA
	international		Bq kg⁻¹	national programme				
	obligations		particulate					
			Suspended					
			solids content					
			Ram ⁻³			4.40		
	Detect abnormal,	02	Bq I ⁻¹ filtrate		Monthly – quarterly	4-48		NA
	fugitive and		Bq kg ⁻¹	Close to pipeline to	Limited indicator			
	unauthorised		particulate	modelled area of maximum				
	releases (Indicator)		Suspended	impact. Both directions from				
	Scale from pipes		solids content	site				
			Bam ⁻³					

Sample/monitoring	Objectives		Data	Location	Frequency	Number range	Total no. of	Differences for
type			requirements			/year	samples/year	historical releases
	Understand	(R1)	Bq I ⁻¹ filtrate	1 - maximum concentration	Annually	1		No difference
	/monitor behaviour	(O1)	Bq kg⁻¹					
	of radionuclides in		particulate					
	the environment		Suspended					
			solids content					
		_	Bam ⁻³					
3.23	Assess total	R1	Bq kg ⁻¹ wet	1-4 where seaweed	Quarterly-annually	1-16	<u>Operator</u>	No difference, where the
Seaweed	representative			consumed or used as			1-16	areas of contamination
	person dose			fertiliser, based on habit			4-48 limited	are.
				surveys and availability of			nuclides	
				species			Regulator	
	Assess dose as an	01	Bq kg ⁻¹ wet	1-4 where seaweed	Quarterly-annually	1-16	1-16	As above
	operator's			consumed or used as			+1-10 part of	
	performance			fertiliser, based on habit			national	
	measure			surveys and availability of			programme for	
				species			background	
	Provide public and	(R1)	Bq kg ⁻¹ wet	1-10 where seaweed	Annual	1-10		No difference
	stakeholder			consumed or used as	Targeted against			
	reassurance			fertiliser, based on habit	life cycle of			
				surveys	seaweed			
	Check	(R1)	Bq kg ⁻¹ wet	10%	Annual – 3 yearly	1 per 3 years -		No difference
	/complementary	(01)	1 0	i.e. 1 location	Targeted against	1		
	monitoring	()			life cycle of			
					seaweed			
	Assess	R2	Bq kg ⁻¹ wet	1-10 for UK	Annual - 3 yearly	0-10		No difference
	background (very			1-2 remote locations or	Targeted against			
	far field)			done as part of a national	life cycle of			
				programme	seaweed			

Sample/monitoring	Objectives		Data	Location	Frequency	Number range	Total no. of	Differences for
type			requirements			/year	samples/year	historical releases
	Assess long term	(R1)	Bq kg ⁻¹ wet	1-4 cover different species	Quarterly-annually	1-16		Unlikely to be best
	trends (indicator)	(O1)						indicator for long term
								historic contamination
								concerns
	Comply with	(R2)	Bq kg ⁻¹ wet	1-10 in whole UK as part of	Annual	0-10		No difference
	International			a national programme	Targeted against			
	obligations				life cycle of			
					seaweed			
	Detect abnormal,	O2	Bq kg ⁻¹ wet	1-4 cover different species	Monthly-quarterly	4-48		NA
	fugitive and				Limited nuclides			
	unauthorised							
	releases (Indicator)							
	Understand	(R1)	Bq kg ⁻¹ wet	1-4 cover different species	Quarterly-annually	1-16		No difference
	/monitor behaviour	(O1)						
	of radionuclides in							
	the environment							

Table 4 – Guidance on how to monitor and sample

Check monitoring would be undertaken in the same way as the monitoring being checked.

Sample type	Objective	General	Sampling/monitoring	Sample preparation
Sample type 4.1a Dose rate monitoring – (Terrestrial) (fluctuating dose rates and secure location)	 Assess total representative person dose and dose as a performance measure Assess total impact on wildlife (dose) and as a performance 	 Select passive dose rate monitor (e.g. TLD, film badge). Instrument should meet defined performance criteria. Ensure secure location. Establish cosmic 	 Locate at height of 1 – 1.5 m in a secure location. Locate such that shielding from source of exposure is minimised (e.g. away from walls, trees, hedges and roads). Instruments to be deployed to meet defined dose rate 	
	unaunonseu leleases		Take measurements to ensure	

Environmental radiological monitoring

monitoring (Terrestrial) (non-• fluctuating dose rates or non- secure location) •	person dose and dose as a performance measure Assess total impact on wildlife (dose) and as a performance measure Provide public, stakeholder and workforce reassurance Assess background Assess long term trends	 measurement (e.g. Mini 6-80, energy compensated NaI(TI) detector). Instrument should meet defined performance criteria, to include [Ref 6]: Inherent background dose rate https://www.ow.com/ucg/html. Cosmic ray response 0.07µGyh^{-1 228}Ra γ Air kerma based response ± 30 % of the response to ¹³⁷Cs γ radiation over the energy range 80 keV to 1.25 MeV Adequate polar response - Precision Establish cosmic and intrinsic background. Ensure instrument is calibrated regularly (e.g. annually). Ensure instrument is calibrated regularly (e.g. annually). Ensure instrument is functioning before and after monitoring survey period (or weekly). Correct measurements for cosmic and intrinsic detector background. Results reported as µGyh⁻¹ air kerma.
---	---	--

Sample type	Objective	General	Sampling/monitoring	Sample preparation
4.2 Dose rate monitoring (Inter-tidal/ marine)	 Assess total representative person dose and dose as a performance measure Assess total impact on wildlife (dose) and as a performance measure Provide public and stakeholder reassurance Assess background Assess long term trends Detect abnormal, fugitive and unauthorised releases Understand/monitor behaviour of radionuclides in the environment Assess total representative person dose and dose as a performance measure 	performance criteria, to include [Ref 6]: - Inherent background dose rate <0.015 μGyh ^{-1 226} Ra γ -Cosmicray response	 (e.g. Mini 6-80) will be representative at this scale, although dose rate can be measured at 2-3 locations at distances of 10 m apart over the same ground type and an average result reported). Note that where geology is changing rapidly it may be difficult to choose a reference background dose rate for comparison. The height at which to take the measurement should be 	

Sample type	Objective	General	Sampling/monitoring	Sample preparation
		 Identify and note sediment type and weather conditions. Select instrument to take spot measurements (e.g. Berthold 122) Instrument should meet defined performance criteria, to include: Detection efficiency / sensitivity capability Precision Energy response that matches the quantity of interest Ensure instrument is calibrated regularly (e.g. annually). Ensure instrument is functioning before and after monitoring survey period (or weekly). Results reported as μGyh⁻¹ over sediment type (including natural background). 	 Take reading over sufficient time period to achieve defined dose rate measurement limit (using integrating function of instrument). 	

4.3a • Prov	vide public and stakeholder	•	Monitoring by foot where this is	•	Monitor strandline (order of -	
	surance		more cost effective than		importance; most recent tide-line,	
onitoring (Inter- • Dete	ect abnormal, fugitive and		monitoring by vehicle.		the	
	uthorised releases	•	Identify and note point in the tidal	•	extreme high water mark and wind	
Strandline • Und	erstand/monitor behaviour		cycle. Allow for tide times to		blown debris above the extreme	
andsmall of ra	adionuclides in the		ensure access.		high water mark) by walking with	
particlesand envi	ironment	•	Identify and note the weather		instrument. Crevices can be	
objects (by			conditions.		investigated as necessary.	
foot)		•	Select instrument to take	•	Probe should be kept just above	
			measurements (e.g. probe with		the ground surface and moved in	
		•	Geiger-Muller detector)		side to side sweeps at a defined	
		•	Instrument should meet defined		rate allowing for instrument	
			performance criteria, (to enable a		response time (e.g. <	
			active items as defined to be	•	0.5m/s). Looking to	
			detected) to include:		detect an increase in	
			- Detection efficiency / sensitivity		counts.	
			capability	•	Procedures should be defined for	
			- Precision		what action to take if any active	
			- Detector should be chosen to		items are found. These will need	
			maximise the ability to detect		to address health and safety	
			the potential contaminant taking		requirements, responsibility for	
			account of the local background		custody and detailed analytical	
			- Response time		requirements.	
		•	Ensure instrument is calibrated	•	If increased count rate is	
			regularly (e.g. annually).		associated with a wider area of	
		•	Ensure instrument is functioning		contamination may need to	
			before and after monitoring survey		move in to a characterisation	
			period (or weekly).		phase to determine its extent.	
		•	Results reported as counts/s.	•	Record general count rate	
		•	Also μ Svh ⁻¹ from the active items		range for the defined transect	
			or object (if appropriate conversion		that has been surveyed.	
			factors available).			
						67

4.3b	Provide public and stakeholder		Monitoring by vehicle where this is		Rate of vehicle travel to be defined	
• Contamination	-	•	• •	•		-
	reassurance		more cost effective than		to allow for time for the instrument	
monitoring (Inter-	Detect abnormal, fugitive and		monitoring by foot.		response and defined detection	
tidal/marine) –	unauthorised releases	•	Identify and note point in the tidal		criteria to be met.	
Strandline and	Understand/monitor behaviour		cycle. Allow for tide times to	•	Travel the area using sweeps, at	
small particles	of radionuclides in the		ensure access.		intervals to meet defined detection	
and objects (by	environment	•	Identify and note the weather		criteria.	
vehicle)			conditions.	•	Procedures should be defined for	
		•	Select instrument to take		what action to take if an active item	
			measurements (e.g. Nal (TI)		is found. These will need to	
			detectors, vehicle/detectors)		address health and safety	
		•	Instrument should meet defined		requirements, responsibility for	
			performance criteria, (to enable an		custody and detailed analytical	
			active item as defined to be		requirements.	
			detected) to include:	•	If increased count rate is	
			- Detection efficiency/sensitivity		associated with a wider area of	
			capability		contamination may need to	
			- Precision		move in to a characterisation	
			- Detector should be chosen to		phase to determine its extent.	
			maximise the ability to detect	•	Record general count rate	
			the potential contaminant taking		range for the defined transect	
			account of the local background		that has been surveyed.	
			- Response time			
			Ensure instrument is calibrated			
			regularly (e.g. annually).			
		_	Ensure instrument is functioning			
		•	-			
			before and after monitoring survey			
			period (or weekly).			
		•	Results reported as μ Svh ⁻¹ from			
			the active items or object (if			
			appropriate conversion factors			
			available).			
L I		I				68

Sample type	Objective	General	Sampling/monitoring	Sample preparation
4.3c Contamination monitoring (Inter- tidal / marine) – areas where active items are prone to accumulate.	• Provide public and stakeholder reassurance	 See Nairn conference proceedings [Ref 13] 		-
4.3d Contamination monitoring of objects (ropes, nets, lobster pots)	 Assess total representative person dose and dose as a performance measure Provide public and stakeholder reassurance 	 Select instrument to take spot measurements (e.g. Berthold 122) Instrument should meet defined performance criteria, to include: Detection efficiency / sensitivity capability Precision Energy response that matches the quantity of interest Appropriate calibration factor developed Ensure instrument is calibrated regularly (e.g. annually). Ensure instrument is functioning before and after monitoring survey period (or weekly). Results reported as μGyh⁻¹. 	 ensuring that window membrane is not punctured. For ropes and nets, monitor in the manner used by fishermen. Take appropriate number of readings across the surface, to be representative of the item being monitored, with shield on (γ only) and without shield (β and γ). Take reading over sufficient time period to achieve defined dose rate measurement limit (using 	

Assess total representative person dose and dose as a	Ensure secure site and power	Cross-contamination to be avoided	-
 performance measure Provide public and stakeholder reassurance Assess background Assess long term trends Comply with international obligations Detect abnormal, fugitive and unauthorised releases. Understand/monitor behaviour of radionuclides in the environment 	 supply. Ensure noise is minimised. HVAS/MVAS needs to collect total particulate (i.e. not specific size range) – This is cautious for the objectives. Air flow to be measured with defined uncertainty (best practice instrument maintain flowrate automatically) – calibration will be required. Filters should trap >95% of particle size >0.3 □ m AMAD [Ref 7]. Mass of particulate collected to be measured (e.g. filters weighed before and after collection). Results reported as Bq m⁻³. 	uniquely label filters).Sample for a period to ensure tha defined detection limits can be	t
 Provide public and stakeholder reassurance Assess long term trends Detect abnormal, fugitive and unauthorised releases. Understand/monitor behaviour of radionuclides in the 	 Collect total particulate on suitable shade material Results reported as Bq/shade 	 blank shades to field). Ensure shades can be identified (e.g. uniquely label shades). Sample for a period to ensure that defined detection limits can be 	
	 Assess long term trends Comply with international obligations Detect abnormal, fugitive and unauthorised releases. Understand/monitor behaviour of radionuclides in the environment Provide public and stakeholder reassurance Assess long term trends Detect abnormal, fugitive and unauthorised releases. Understand/monitor behaviour of radionuclides in the environment 	 Assess long term trends Comply with international obligations Detect abnormal, fugitive and unauthorised releases. Understand/monitor behaviour of radionuclides in the environment Filters should trap >95% of particle size >0.3 □m AMAD [Ref 7]. Mass of particulate collected to be measured (e.g. filters weighed before and after collection). Results reported as Bq m⁻³. Provide public and stakeholder reassurance Assess long term trends Detect abnormal, fugitive and unauthorised releases. Understand/monitor behaviour of radionuclides in the 	 Assess long term trends Comply with international obligations Detect abnormal, fugitive and unauthorised releases. Understand/monitor behaviour of radionuclides in the environment Filters should trap >95% of particle size >0.3 m AMAD [Ref 7]. Mass of particulate collected to be measured (e.g. filters weighed before and after collection). Results reported as Bq m⁻³. Collect total particulate on suitable shade material Assess long term trends Detect abnormal, fugitive and unauthorised releases. Understand/monitor behaviour of radionuclides in the environment Filters should trap >95% of particle size >0.3 m AMAD [Ref 7]. Mass of particulate collection). Results reported as Bq m⁻³. Collect total particulate on suitable shade material Results reported as Bq/shade Callect abnormal, fugitive and unauthorised releases. Understand/monitor behaviour of radionuclides in the Sample for a period to ensure that defined detection limits can be

Sample type	Objective	General	Sampling/monitoring	Sample preparation
4.6 Fotal deposition (wet and dry)	 Provide public and stakeholder reassurance Assess background Assess long term trends Comply with international obligations Detect abnormal, fugitive and unauthorised releases. Understand/monitor behaviour of radionuclides in the environment 	 rain gauge). Minimise adsorption of radionuclides to container (e.g. presoak containers and use carrier solutions). Minimise growth of algae (e.g. use brown collection bottle). 	 Record area of collection funnel and duration of time sample collected. Ensure sample collection period will not cause sample container to over- flow, but sufficient sample is collected to ensure detection limit can be achieved. A typical collection period is 2-4 weeks. 	 prevent degradation and loss of volatiles, if appropriate (e.g. chill at about 4°C). Filter samples through a 0.45µm membrane and analyse filtrate and

Sample type	Objective	General	Sampling/monitoring	Sample preparation
4.7a Water -Surface freshwater (e.g. rivers, streams, lakes)	 Assess total representative person dose and dose as a performance measure Assess total impact on wildlife (dose) and as a performance measure Provide public and stakeholder reassurance Assess background Assess long term trends Comply with international obligations Detect abnormal, fugitive and unauthorised releases. Understand/monitor behaviour of radionuclides in the environment 	 Determine appropriate sample container dependent upon radionuclide(s) to be sampled. Report results as Bq I⁻¹. 	 Rinse collection apparatus and container with sample. Collect representative sample. Store the sample to prevent deterioration in transit to the lab (e.g. cool, dark conditions, cool box). 	 Store samples at laboratory to minimise growth of algae and avoid degradation of sample (e.g. chill at about 4°C in the dark). Filter samples through a 0.45µm membrane and analyse filtrate and residue if the monitoring objective requires information on the partitioning between dissolved and particulate phases. Ensure representative sub-sample is taken for analysis (e.g. shake water sample). Concentrate sample if needed (e.g. through ion exchange or evaporation). Preserve with nitric acid for long storage (analysis dependent).

Sample type	Objective	General	Sampling/monitoring	Sample preparation
4.7b Water -Drinking water (tap water)	 Assess total representative person dose and dose as a performance measure Provide public and stakeholder reassurance Assess background Assess long term trends Comply with international obligations Understand/monitor behaviour of radionuclides in the environment 	 mains tap water or the water from within the household pipework. Record site location of sample. Follow radon specific protocol if measuring for radon [Ref 12]. 	 Rinse collection apparatus and container with sample. Take representative sample bearing in mind the need to allow tap to run for adequate time interval depending upon sample type requirement (household or mains water). Collect water sample directly interthe container. Minimise radionuclide adsorption to container walls by adding a carrier or preservative to water as appropriate (dependent upon the radionuclide). Store the sample to prevent deterioration in transit to the lab 	

Sample type	Objective	General	Sampling/monitoring	Sample preparation
4.7c Water - Drinking water (wells or groundwater - assumed to be local consumers direct from groundwater via borehole or spring)	long term trends	 Detailed guidance on collection of groundwater samples is provided in References 1 – 5. Determine appropriate sample container dependent upon radionuclide(s) to be sampled. If used, confirm borehole is suitable for sampling and representative of the water consumed. Record site location of sample. Follow radon specific protocol if measuring for radon [Ref 12]. Report results as Bq l⁻¹. 	 origin). Select collection apparatus (e.g. bailer or pump) – use pump only if content < 5% solid. Suction pumps are only recommended for depths 	 Concentrate sample if needed (e.g. through ion exchange or evaporation).

Sample type	Objective	General	Sampling/monitoring	Sample preparation
4.8	Assess total representative	Two methods of preparation either	• Rinse collection apparatus and	Select a representative sub-
Milk and dairy	person dose and dose as a	the analysis of the raw edible	container with sample (if milk).	sample for analysis (eg shake
products	performance measure	fraction (e.g. milk collected directly	• Select a representative sample of	milk sample).
	• Provide public and stakeholder	from the farm) or via culinary	the source material. Consider the	• Concentrate sample if needed (e.g.
	reassurance	preparation (in the case of milk	area over which cattle have been	evaporation, ion-exchange, freeze
	 Assess background Assess 	this might mean sampling	grazing, if taken at the farm, how	drying).
	long term trends	processed butter, milk etc).	many animals should be sampled,	
	 Comply with international 	• Report results as Bq I ⁻¹ . If results	sampling from the tanker etc.	
	obligations	are reported as dry weight then the	• Record the provenance of the	
	• Detect abnormal, fugitive and	fresh:dry weight ratio should be	sample to ensure traceability of the	9
	unauthorised releases	provided.	sample back to the field (links to	
	• Understand/monitor behaviour		representative nature of the	
	of radionuclides in the		sample).	
	environment		Add carrier or preservative to milk	
			as appropriate depending upon the	9
			radionuclide.	
			Store the sample to prevent	
			deterioration in transit to the lab	
ł			(e.g. store in air tight containers,	
1			cool box)	

Meat and meat productsperson dose and dose as a performance measureanalysis (e.g. from a mature animal that would be solda a a animal that would be soldincluding wild or game foods• Provide public and stakeholder reassurancecommercially. Culinary preparation may need to be taken intoa a a commercially.	Identify sample type and determine a representative cut/part of the animal (e.g. the thigh, neck etc to ensure select the edible fraction	deterioration (e.g. chill at about 4°C or freeze).
 Comply with international obligations Detect abnormal, fugitive and unauthorised releases Understand/monitor behaviour of radionuclides in the environment Report results as Bq kg⁻¹ (fresh weight). If results are reported as dry weight then the fresh:dry weight ratio should be provided. 	that would be consumed). Select a representative sample noting that it may not be possible to be selective (e.g. some wild foods may be collected from road kills/natural deaths as opposed to culling). Select sample(s) of muscle, liver and kidney (where there is a market for offal e.g. from farmed animals) as these cover the main sites of radionuclide accumulation and are all consumed in significant quantities. Record the provenance of the sample to ensure traceability of the sample back to the field (links to representative nature of the sample).	 Prepare samples to provide edible fraction (may require culinary preparation depending upon the objective). Dry sample to constant weight (e.g. oven dry 40 – 105°C, freezedry). Analyse fresh if detection limits can be achieved and a representative sub-sample can be taken; or if volatile radionuclides are present). Record dry/fresh ratio. Select a representative sub-sample for analysis (e.g. by homogenising dry sample in mill or blender; or mincing fresh sample. Cone and quarter if appropriate).

Sample type	Objective	General	Sampling/monitoring	Sample preparation
4.10 Poultry, eggs	 Assess total representative person dose and dose as a performance measure Provide public and stakeholder reassurance Assess background Assess long term trends Understand/monitor behaviour of radionuclides in the environment 	 Prepare the raw edible fraction for analysis (e.g. from a mature bird that would be sold commercially). Culinary preparation may need to be taken into account. Approach outlined is for longer lived radionuclides that will still exist by the time the food product is available for human consumption. Consider the need for local sampling versus retail sampling for national averages Report results as Bq kg⁻¹ (fresh weight). If results are reported as dry weight then the fresh:dry weight ratio should be provided. 	 a representative cut/part of the food stuff (e.g. the thigh or breast for the bird to ensure select the edible fraction). Select a representative sample. Record the provenance of the sample to ensure traceability of the sample back to the field (links to representative nature of the 	 deterioration (e.g. chill at about 4°C or freeze). Prepare samples to provide edible fraction (may require culinary preparation depending upon the objective). Dry sample to constant weight (e.g. air dry, oven dry 40 – 105°C, freeze-dry). Analyse fresh if

Sample type	Objective	General	Sampling/monitoring	Sample preparation
4.11 Fruit and Vegetables including wild foods such as: Apple, Bilberry, Blackberry, Cherry, Chestnut Chive, Cobnut/ hazelnut, Crab apple, Damson, Dandelion, Elderberry, Elderflower, Garlic, Hawthorn berry, Horseradish, Mayflower, Mint, Mushroom, Nettle, Peppermint, Plum, Raspberry, Rose hip, Rowanberry, Sloe, Strawberry, Watercress	 obligations Detect abnormal, fugitive and unauthorised releases Understand/monitor behaviour of radionuclides in the environment 	 Prepare the raw edible fraction (e.g. mature fruit/vegetable as may be sold commercially) for analysis Culinary preparation may need to be taken into account. Approach outlined is for longer lived radionuclides that will still exist by the time the food product is available for human consumption. Consider the need for local sampling versus retail sampling fo national averages. Report results as Bq kg⁻¹ (fresh weight). If results are reported as dry weight then the fresh:dry weight ratio should be provided. 	 extraneous material. Select a representative sample of the source material. When sampling in the field consider the location and size of area to be sampled (e.g. collect sample from the ends of a W or X shaped sampling pattern). When sampling sacks/boxes after harvesting how 	 (e.g. air dry oven dry 40 – 105°C, freeze-dry), but analyse fresh for volatile radionuclides. Record dry/fresh ratio. Select a representative subsample for analysis (e.g. by homogenising dry sample in mill or blending fresh samples. Cone

Sample type	Objective	General	Sampling/monitoring	Sample preparation
4.12 Cereal	 Assess total representative person dose and dose as a performance measure Provide public and stakeholder reassurance Assess background Assess long term trends Understand/monitor behaviour of radionuclides in the environment 	 Prepare the raw edible fraction (e.g. mature grain) for analysis. Culinary preparation may need to be taken into account (in the case of cereal this might mean sampling bread). Approach outlined is for longer lived radionuclides that will still exist by the time the food product is available for human consumption. For the objective of understanding distribution in the field, analysis does not need to focus on mature grain and any stage of the crop may be sampled and analysed fresh and immediately to detect short lived radionuclides. Consider the need for local sampling versus retail sampling for national averages. Report results as Bq kg⁻¹ (fresh weight). If results are reported as dry weight then the fresh:dry weight ratio should be provided. 	 Identify cereal type. Sample the material at an appropriate time (e.g. as mature grain straight from the field or as grain that has been harvested). Select a representative sample of the source material. When sampling in the field consider the location and size of area to be sampled (e.g. in the field collect sample from the ends of a W or X shaped sampling pattern). When sampling grain from sacks after harvesting, consider how many samples, which sacks etc to sample. Record the provenance of the sample to ensure traceability of the sample back to the field (links to representative nature of the sample). Store the sample to prevent deterioration in transit to the lab (e.g. store in air tight containers). 	 Dry sample to constant weight (e.g. air dry, oven dry 40 – 105°C, freeze-dry), but analyse fresh for volatile radionuclides. Record dry/fresh ratio. Select a representative sub- sample for analysis (e.g. by homogenising dry sampled in mill or blender or blending fresh

Sample type Objective	General	Sampling/monitoring	Sample preparation
 Assess total impact on wildlife (dose) and as a performance measure Provide public and stakeholder reassurance Assess background Comply with international obligations 	 Samples should be collected from undisturbed permanent pasture The area may be fenced off to protect the collection site. Samples of soil in the root zone should be collected to achieve these objectives (typically 2-5cm). It is normal to remove roots as far as reasonably practicable from the sample to achieve these objectives. However, it may be appropriate to include all the roots in the sample in certain circumstances. Report results as Bq kg⁻¹ (dry weight) 	 sample over a scale of up to 5-10 m. This may be achieved by collecting 5 soil samples from the points of a W shape or the ends and centre of an X shape over a circle of 10 m diameter [Ref 9,10]. The samples may be bulked. Remove surface litter and overlying vegetation. Collect soil samples such that 	 prevent degradation and loss of volatiles, if appropriate (e.g. chill at about 4°C or freeze). Dry sample to constant weight and preventing fusing of sample (e.g. oven dry 40-105°C or freeze dry). (May need to analyse wet for volatile radionuclides). Record dry/wet ratio. Remove gravel component by sieving to <2mm and discarding >2mm fraction. Ensure representative sub-sample is taken for analysis (e.g. by

Sample type	Objective	General	Sampling/monitoring	Sample preparation
4.13b Soil	 Assess long term trends Understand/monitor behaviour of radionuclides in the environment 	 Samples should be collected from undisturbed permanent pasture The area may be fenced off to protect the collection site. Samples will need to be sufficiently deep to achieve monitoring objectives. A typical practical depth is 15 cm. Report results as Bq kg⁻¹ (dry weight) and Bq m⁻². 	 Obtain a reasonably representative sample over a scale of up to 5-10 m. This may be achieved by collecting soil samples from the points of a shape or the ends and centre of an shape over a circle of 10 m diameter. The samples may be bulked. Remove surface litter and overlyin vegetation. Collect soil samples such that excessive damage to the collection site is minimised and that the sample is to a known depth. This may be achieved by collecting 4 – 10 cm diameter cores to a depth or 15 cm. Record the area from of the sample (e.g. area of the core). Section core into slices which enable the monitoring objectives the achieved. Account may need the total deposition is being established for a baseline. Cores are typically sectioned into 5-10 c slices. Clean core sectioning tool (blade) between slices. Sub-sample from centre of ead core slice to reduce smearing. 	n. 5 M X x r. g f f f m

Sample type	Ob	jective	General	Sa	mpling/monitoring	Sa	mple preparation
4.14 Grass/Herbage	•	Dose surrogate Provide public and stakeholder reassurance Assess background Assess long term trends Comply with international obligations (instead of milk) Detect abnormal, fugitive and unauthorised releases. Understand/monitor behaviour of radionuclides in the environment	 Area may be fenced off to prevent removal of grass and unwanted additions (e.g. animal droppings, fertiliser). Also enables growth since last sample to be collected. Samples should be collected at same location as soil samples if the objective is to validate dispersion, deposition and transfer modelling. Report results as Bq kg⁻¹ (fresh weight) and Bq m⁻². 		Obtain a reasonably representative sample over a scale of up to 5-10 m from a known total area. This may be achieved by collecting 5 grass samples from a 0.25 - 1 m ² quadrat at the points of a W shape or the ends and centre of an X shape over a circle of 10 m diameter. Grass/herbage samples should be representative of that present at a scale of up to 5-10 m. The samples may be bulked. Trim sample approx 10mm above soil surface with shears (or similar), taking care not to collect any soil and excluding non- herbage (i.e. woody) material. Store sample to prevent deterioration (e.g. airtight container).	•	Store samples at laboratory to prevent degradation and loss of volatiles, if appropriate (e.g. chill at about 4°C or freeze). Dry sample to constant weight and preventing fusing of sample (e.g. oven dry 40-105°C or freeze dry). (May need to analyse wet for volatile radionuclides). Record dry/wet ratio. Ensure representative sub-sample is taken for analysis (e.g. use blender).

Sample type	Ob	ojective	Ge	eneral	Sa	mpling/monitoring	Sa	mple preparation
4.15	•	Assess total representative	•	Consider seasonal (annual) cycle	•	Correctly identify single species	•	Store samples at laboratory to
Freshwater weed	I	person dose and dose as a		on sampling strategy.		(including hybrids) as determined		prevent degradation and loss of
		performance measure	•	Selection of recent growth for		to meet objective. May need to be		volatiles, if appropriate (e.g. chill
	•	Provide public and stakeholder		analysis will provide a better		a food species (e.g. water cress).		at about 4°C or freeze).
		reassurance		indicator of recent discharges than	•	Collect and trim recent growth from	•	Dry sample to constant weight
	•	Assess background Assess		analysis of a whole plant which wil	I	plant or parts used for food (as		(e.g. air dry, oven dry 40 – 105°0
		long term trends		lead to an indicator of integrated		applicable) according to local		freeze-dry), but analyse fresh for
	•	Detect abnormal, fugitive and		discharges over a few years.		practice.		volatile radionuclides.
		unauthorised releases.	•	Report results as Bq kg ⁻¹ (fresh	•	Wash in water to remove	•	Record dry/fresh ratio.
	•	Understand/monitor behaviour		weight)		particulates.	•	Select a representative sub-
		of radionuclides in the			•	Store the sample to prevent		sample for analysis (e.g. by
		environment				deterioration in transit to the lab		homogenising dry sampled in m
						(e.g. cool, dark conditions, cool		or blender or blending fresh
						box).		samples, Cone and quarter if
								appropriate).

Sample type Objective	General	Sampling/monitoring	Sample preparation
 Assess total representative person dose and dose as a performance measure (All species but not domesticated Assess total impact on wildlife (dose) and as a performance measure Assess total impact on wildlife (dose) and as a performance measure Provide public and stakeholder reassurance Assess background Detect abnormal, fugitive and unauthorised releases Understand/monitor behaviour of radionuclides in the environment 	 Report results as Bq kg⁻¹ (fresh weight). If results are reported as dry weight then the fresh:dry weight ratio should be provided. For some objectives there is likely to be ad hoc monitoring or based on sample availability rather than routine targeted sampling. 	 Select species for required sampling. Correctly identify species and collect road kill or cull if needed (bearing in mind the legal protectior afforded to some species) or sample faeces or live monitor. If faeces collected then guidance on storage and preparation of sewage sludge should be considered. Record the provenance of the sample to ensure traceability of the sample back to the field (links to representative nature of the sample). Store the sample to prevent deterioration in transit to the lab (e.g. store in air tight container, cool box). 	 specific portion of sample (e.g. feathers). Record weights of parts required for analysis and for discarded parts. Dry sample to constant weight

Sample type	Objective	General	Sampling/monitoring	Sample preparation
4.17 Landfill leachates	 Assess total representative person dose and dose as a performance measure Provide public and stakeholder reassurance Assess long term trends Detect abnormal, fugitive and unauthorised releases 	 Detailed guidance on collection of samples from boreholes is provided in References 1 – 5. Report results as Bq I⁻¹ (for dissolved and particulate phases) and kg/l of particulate (if appropriate). 	 Determine sample collection depth based on monitoring requirements Select collection apparatus (e.g. bailer or pump) – use pump only if content < 5% solid. Suction pumps are only recommended for depths of <8m. A submersible pump is required for deeper boreholes. Purge borehole (3 borehole volumes). Rinse collection apparatus and container with sample. Collect representative sample. Store the sample to prevent deterioration in transit to the lab (e.g. cool, dark conditions). 	minimise growth of algae and avoid degradation of sample (e.g. chill at about 4°C or freeze in the dark).
4.18 Sewage/ sludges	 Assess total representative person dose and dose as a performance measure Provide public, stakeholder and workforce reassurance Assess background Assess long term trends Detect abnormal, fugitive and unauthorised releases Understand/monitor behaviour of radionuclides in the environment 	 Report results as Bq I⁻¹ or Bq kg⁻¹ (dry weight) depending on water content. 		 Store samples at laboratory to prevent degradation and loss of volatiles, if appropriate (e.g. chill at about 4°C or freeze). Dry sample to constant weight and preventing fusing of sample (e.g. oven dry 40-105°C in a well ventilated oven or freeze dry). (May need to analyse wet for volatile radionuclides or if smell is too offensive to allow drying). Record dry/wet ratio. Ensure representative sub-sample is taken for analysis (e.g. shake liquid samples).

Sample type Objective	e G	Seneral	Sampling/monitoring	Sample preparation
Fish - Marine and pers reshwater perf • Asse (dos mea • Prov reas • Asse long • Com oblig • Und of ra	ess total representative son dose and dose as a formance measure ess total impact on wildlife se) and as a performance sure vide public and stakeholder ssurance ess background Assess g term trends nply with international gations lerstand/monitor behaviour adionuclides in the ironment	Select species to meet monitoring objective (e.g. benthic versus pelagic, stage of growth, availability in the fishing ground). Report results as Bq kg ⁻¹ (fresh weight).	 Correctly identify species caught by net or line. Store the sample to prevent deterioration in transit to the lab (e.g. cool, dark conditions, cool box). 	 Store samples at laboratory to prevent degradation and loss of volatiles, if appropriate (e.g. chill at about 4°C or freeze). Prepare the raw edible fraction for analysis. Culinary preparation may need to be taken into account. Dry sample to constant weight (e.g. oven dry 40 – 105°C, freezedry), but analyse fresh for volatile radionuclides. Record dry/wet ratio. Select a representative subsample for analysis (e.g. by homogenising dry sample in mill or blending fresh samples. Cone and quarter if appropriate).

Sample type	Objective	General	Sampling/monitoring	Sample preparation
I.20 Crustaceans and Molluscs – Marine and reshwater	 Assess total representative person dose and dose as a performance measure Assess total impact on wildlife (dose) and as a performance measure Provide public and stakeholder reassurance Assess background Assess long term trends Comply with international obligations Detect abnormal, fugitive and unauthorised releases Understand/monitor behaviour of radionuclides in the environment 	 Select species to meet monitoring objective. Report results as Bq kg⁻¹ (fresh weight). 	 Correctly identify species. Collect by hand sampling or using pots or digging as appropriate for species. Do not depurate. Store the sample to prevent deterioration in transit to the lab (e.g. cool, dark conditions, cool box). 	 Store samples at laboratory to prevent degradation and loss of volatiles, if appropriate (e.g. chill at about 4°C or freeze). Prepare the raw edible fraction fo analysis. Culinary preparation may need to be taken into account. Dry sample to constant weight (e.g. oven dry 40 – 105°C, freezedry), but analyse fresh for volatile radionuclides. Record dry/wet ratio. Select a representative subsample for analysis (e.g. by homogenising dry samples. Cone and quarter if appropriate).

Sample type Obj	jective	General	Sampling/monitoring	Sample preparation
4.21 Sediments - Estuary/coastal and freshwater	Assess total representative person dose and dose as a performance measure Assess total impact on wildlife (dose) and as a performance measure Provide public and stakeholder reassurance Assess background Assess long term trends Comply with international obligations Detect abnormal, fugitive and unauthorised releases Understand/monitor behaviour of radionuclides in the environment	 Allow for tide times to ensure access. Ensure depositional environment. Report results as Bq kg⁻¹ (dry weight). For freshwater samples take from exposed river bed or banks of rive (if regularly inundated). Use handheld detectors to guide sampling. 	sample over a scale of up to 5-10 m. This may be achieved by collecting 5 surface sediment	 Store samples at laboratory to prevent degradation and loss of volatiles, if appropriate (e.g. chill at about 4°C or freeze). Dry sample to constant weight and preventing fusing of sample (e.g. oven dry 40-105°C or freeze dry). (May need to analyse wet for volatile radionuclides). Record dry/wet ratio. Remove gravel component by sieving to <2mm and discarding >2mm fraction. Ensure representative sub-sample is taken for analysis (e.g. by grinding and coning and quartering). For some objectives may need to normalise or report factors which can influence concentrations (e.g. grain size (loss on ignition at 450 C a good proxy*), total organic carbon) or restrict grain size (e.g. <250 m). [Refs 8 and 11]

Sample type	Objective	General	Sampling/monitoring	Sample preparation
4.22 Seawater (collected from shore)	 Assess total impact on wildlife (dose) and as a performance measure Provide public and stakeholder reassurance Assess Background Assess long term trends Comply with international obligations Detect abnormal, fugitive and unauthorised releases Understand/monitor behaviour of radionuclides in the environment 	samples. Minimise adsorption of 	 Allow for tide times to ensure access (for beach collection). Rinse collection apparatus and container with sample. Collect water (use water submersible pump for large volume samples or bucket/carboy for small volume samples). Continuous automatic sampling maybe required. Store the sample to prevent deterioration in transit to the lab (e.g. cool, dark conditions, cool box). 	

Sample type Objective	General	Sampling/monitoring	Sample preparation
 4.23 Seaweed Person dose and d performance meas Provide public and reassurance Assess backgroun long term trends Detect abnormal, fu unauthorised relea Understand/monito of radionuclides in environment 	 on sampling strategy. Selection of recent growth for analysis will provide a better indicator of recent discharges than analysis of a whole frond which will lead to an indicator of integrated discharges over a fe years. Report results as Bq kg⁻¹ (fresh 	 (for beach collection). Correctly identify single species (including hybrids) as determined meet objective. May need to be a food species. Collect and trim recent growth from 	 prevent degradation and loss of volatiles, if appropriate (e.g. chill at about 4°C or freeze). Dry sample to constant weight (e.g. air dry, oven dry 40 – 105°C, freeze-dry), but analyse fresh for volatile radionuclides. Record dry/fresh ratio. Select a representative subsample for analysis (e.g. by homogenising dry sampled in mill or blender or blending fresh samples, Cone and quarter if

Aspect of monitoring	Performance criteria	Guidance
Monitoring locations	Characterise air concentrations at locations of highest air concentration (breathing zone), exposed population groups and background locations	Minimum of three locations monitored around a nuclear site at location of modelled highest ground-level air concentration, exposed population group with highest air concentration and one background location.
Locating sampler	Representative monitoring location over a distance of about 100m at breathing height.	Samplers situated away from major obstructions such as trees, buildings etc. Air inlet at breathing height, at least 1.5m from the immediate ground level. Ideally the inlet should be less than 4m from ground level
Data capture	At least 95% of time	 Measures to improve monitoring reliability, include: Brushless motors Reliable electrical supply suitably-protected to prevent accidental damage Secure location for sampler to protect against accidental or deliberate damage.
Detection limit	As an example, the detection limit for Be-7 would be around 0.06 mBq m ⁻³ based on a sample flow rate of 1.2 m ³ /min and an analytical detection limit of 3.2 Bq per filter set	A sampling period of about 1 month with a sampler flow rate of about 1-2 m ³ /min should achieve this detection limit. Bulking of samples over 3 months may be acceptable to achieve detection limits. Filter material should be selected to help ensure most suitable analytical method is used to achieve detection limits. Polycarbonate filter papers can be fully ashed and digested or quartz fibre filters can be leached to enable a solution to be analysed. This is likely to achieve a better detection limit than compressing filters and counting directly by gamma-spectrometry.
Particle size	No size selective inlet.	Most commercial filter papers should be near 100% efficient and it is more important to consider the analytical characteristics of the papers. The samplers used were standard design high volume samplers that are understood to have a 50% sampling efficiency for particles with mean aerodynamic diameters between 10 μ m and 18 μ m at average wind speeds (the difference is due to the relative orientation of the sampler roof to the source). The system should be near 100% efficient at particle diameters <5 μ m.

Table 5 – Guidance ambient air monitoring for radioactivity

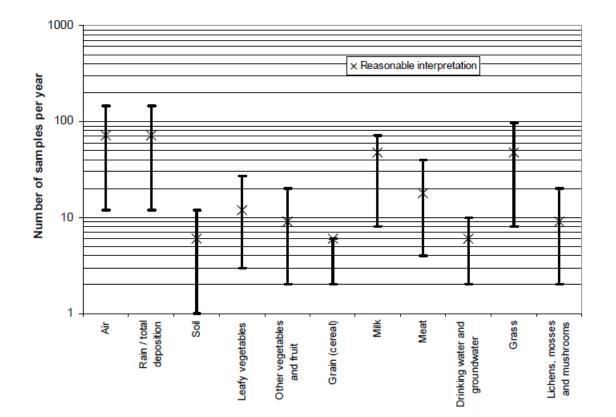
Aspect of	Performance criteria	Guidance
monitoring		
Volumetric flow	Measured with an	Flow-rate sensor should be calibrated against a
Volumente now	uncertainty of +/- 7%	calibrated flow orifice or transfer standard. Calibrations
		should be undertaken when High Volume Air Samplers
		are first purchased, after every motor or brush change,
		anytime the flow sensor is replaced or adjusted, anytime
		a one-point audit check deviates more than 7% from the
		custom calibration or at least every six months.
		Calibration of the standard orifice should be undertaken
Cross-	Cross-contamination	Sample handling protocols should be defined to protect
contamination	avoided	sample filter papers (e.g. using gloves and transport
Containination		containment). Blank filters should follow same sample
		handling procedures and then be analysed.
Health and safety	Noise	Insofar as the application of Statutory Instrument 2005
	Electrical installation to	no 14643 Health and Safety The Control of Noise at
	BS7671	Work Regulations 2005 the period of operation at the
	PAT testing following	sampler is limited to typically less than 30 minutes (say
	HSE guidance note 107	during calibrations) so the assessment must be based
		on the workers additive dose over the working day and
		week so the complete work pattern must be taken into
		account. The dose contribution from the sampler needs
		to be measured as the working range and this will vary
		from depending on motor type and speed. The most
		significant noise risk is on sampler start up if the flow
		settings are fully open during installation if drilling is
		required as part of the process.
		Equipment should not be electrically modified unless
		performed by a qualified electrician. Field technicians can
		undertake basic installations limited to wiring of plugs
		provided their employer has suitably trained them.
		A suitably trained technician can carry this out. Training
		would be provided by either a nominated member of
		staff that holds a recognised qualification or by a
Quality assurance	Verification of the chain	The use of a chain of custody to tie in all other records
	of custody so that the	is imperative.
	lifecycle of any	Essentially a 'reality' check on the levels found.
	measurement can be	The analytical lab should carry UKAS accreditation for
	documented.	the determinands and demonstrate compliance with
	Assessment of the	ISO17025.
	reported data	
	QA accreditation	

Appendix 1 – Interpretation of IAEA Safety Standard on environmental and source monitoring

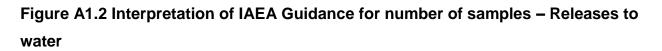
The International Atomic Energy Agency (IAEA) has published a safety standard on environmental and source monitoring [Ref 1]. It provides guidance on what should be monitored and at what frequency for releases to air and water. However, it does not give guidance on how many different types of samples (e.g. types of vegetables) should be collected or how many locations they should be collected from.

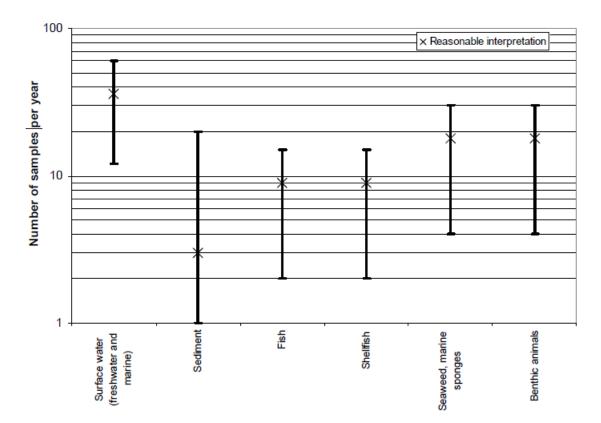
An interpretation of this IAEA Safety Standard is provided in this appendix on the total number of annual samples which should be collected by making minimal, reasonable and maximum assumptions about number of types of samples and locations. This interpretation is shown in Tables A1.1 and A1.2 and displayed in Figures A1.1 and A1.2. This interpretation of the total number of samples required has been used as a framework for defining the guidance in the rest of this document.

Table A1.1 Interpretation of IAEA Safety	Standard for environmental monitoring associated with releases to air
--	---


Monitoring type	IAEA guidance	Minimal interpretation of I guidance	AEA	Reasonable interpretation guidance	of IAEA	Maximal interpretation of guidance	IAEA
		Description	Samples per year	Description	Samples per year	Description	Samples per year
Dose rate monitoring	Continuously	Continuously at maximum air concentration. On-line instrumental monitoring.	Every 10-15 s at 1 location	Continuously at maximum air concentration (1), nearby population centres (3) and background locations (2). On-line instrumental monitoring	Every 10- 15 s at 6 locations	Continuously around site (5), at maximum air concentration (1), nearby habitation (5) and background locations (3). On-line instrumental monitoring	Every 10-15 s at 14 locations
Air	Continuously, monthly measurement	Continuously at maximum air concentration, monthly measurement	12	Continuously, monthly measurement at maximum air concentration (1), nearby population centres (3) and background locations (2)	72	Continuously, monthly measurement around site (4), at maximum air concentration (1), nearby habitation (4) and background locations (3).	144
Rain / total deposition	Continuously, monthly measurement	Continuously at maximum air concentration	12	Continuously at maximum air concentration (1), nearby population centres (3) and background locations (2)	72	Continuously, monthly measurement around site (4), at maximum air concentration (1), nearby habitation (4) and background locations (3).	144
Soil	Once per year	Once per year at maximum air concentration	1	Once per year at maximum air concentration (1), nearby population centres/farms (3) and background locations (2)	6	Once per year, around site (4), at maximum air concentration (1), nearby population centres/farms (4) and background locations (3)	12

Monitoring type	IAEA guidance	Minimal interpretation of I guidance	IAEA	Reasonable interpretation guidance	Reasonable interpretation of IAEA guidance		Maximal interpretation of IAEA guidance	
		Description	Samples per year	Description	Samples per year	Description	Samples per year	
Leafy vegetables	Every month during growing season	Every month during growing season (3 months) (1 type) at maximum air concentration	3	Every month during growing season (3 months) (2 types) at maximum air concentration (1) and other location (1)	12	Every month during growing season (3 months) (3 types) at maximum air concentration (1) and other locations (2)	27	
Other vegetables and fruit	Selected samples at harvest	Selected samples (2 types) at harvest (once per year) at maximum air concentration	2	Selected samples (3 types) at harvest (once per year) at maximum air concentration (1) and other locations (2)	9	Selected samples (5 types) at harvest (once per year) at maximum air concentration (1) and other locations (3)	20	
Grain (cereal)	Selected samples at harvest	Selected samples (2 type) at harvest (once per year) at maximum air concentration	2	Selected samples (2 types) at harvest (once per year) at maximum air concentration (1) and other locations (2)	6	Selected samples (2 types) at harvest (once per year) at maximum air concentration (1) and other locations (2)	6	
Milk	Every month when cows are on the pasture	Every month when cows are on the pasture (8 months) at maximum air concentration	8	Every month when cows are on the pasture (8 months) at maximum air concentration (1), nearby farms (3) and background locations (2)	48	Every month when cows are on the pasture (8 months) at maximum air concentration (1), nearby farms (5) and background locations (3)	72	


Monitoring type	IAEA guidance	-		Reasonable interpretation of IAEA guidance		Maximal interpretation of IAEA guidance	
		Description	Samples	Description	Samples per	Description	Samples per
			per year		year		year
Meat	Selected samples, twice	Selected samples (2	4	Selected samples (3	18	Selected samples (5	40
	per year	types), twice per year at		types), twice per year at		types), twice per year at	
		maximum air		maximum air		maximum air	
		concentration		concentration (1) and		concentration (1) and	
				other locations (2)		other locations (3)	
Drinking water and	Twice per year	Twice per year at one	2	Twice per year at a few	6	Twice per year at some	10
groundwater		location		locations (3)		locations (5)	
Grass	Every month when cows	Every month when cows	8	Every month when cows	48	Every month when cows	96
	are on the pasture	are on the pasture (8		are on the pasture (8		are on the pasture (8	
		months) at maximum air		months) at maximum air		months), around site (4),	
		concentration		concentration (1), nearby		at maximum air	
				population centres/farms		concentration (1), nearby	
				(3) and background		population centres/farms	
				locations (2)		(4) and background	
						locations (3)	
Lichens, mosses,	Selected samples,	Some selected samples	2	Some selected samples	9	Some selected samples	20
mushrooms	once per year	(2 types), once per year at		(3 types), once per year at		(5 types), once per year	
		maximum air		maximum air		at maximum air	
		concentration		concentration (1) and		concentration (1) and	


Table A1.2 Interpretation of IAEA Safety Standard for environmental monitoring associated with releases to water

Monitoring type	IAEA guidance	Minimal interpretation of IAEA guidance		Reasonable interpretation of IAEA guidance		Maximal interpretation of IAEA guidance	
		Description	Samples per year	Description	Samples per year	Description	Samples per year
Surface water (freshwater and marine)	Continuous sampling, monthly measurement	Continuous sampling, monthly measurement at one location	12	Continuous sampling, monthly measurement at a few locations (3)	36	Continuous sampling, monthly measurement at some locations (5)	60
Sediment	Once per year	Once per year at one location	1	Once per year at a few locations (3)	3	4 times per year at some locations (5). [Greater frequency of monitoring might be more appropriate for significant discharges].	20
Fish	Selected samples, once per year	Selected samples (2 types), once per year at one location	2	Selected samples (3 types), once per year at a few locations (3)	9	Selected samples (3 types), once per year at some locations (5)	15
Shellfish (e.g. mollusc, crustacean)	Selected samples, twice per year	Selected samples (2 types), once per year at one location	2	Selected samples (3 types), once per year at a few locations (3)	9	Selected samples (3 types), once per year at some locations (5)	15
Seaweed, marine sponges	Selected samples, twice per year	Selected samples (2 types), twice per year at one location	4	Selected samples (3 types), twice per year at a few locations (3)	18	Selected samples (3 types), twice per year at some locations (5)	30
Benthic animals (e.g. mollusc, crustacean)	Selected samples, twice per year	Selected samples (2 types), twice per year at one location	4	Selected samples (3 types), twice per year at a few locations (3)	18	Selected samples (3 types), twice per year at some locations (5)	30

Figure A1.1 Interpretation of IAEA Guidance for number of samples – Releases to air

